

Прибор для измерения показателей качества электрической энергии и электроэнергетических величин

«Энерготестер ПКЭ-А»

модификация "Энерготестер ПКЭ-А-С4"

Руководство по эксплуатации

MC2.725.003-02 PЭ

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35


сайт: mars.pro-solution.ru | эл. почта: msn@pro-solution.ru телефон: 8 800 511 88 70

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
2. ОПИСАНИЕ ПРИБОРОВ И ПРИНЦИПА ИХ РАБОТЫ	6
2.1. Назначение	
2.2. Условия эксплуатации	
	15
3. ПОДГОТОВКА ПРИБОРА К РАБОТЕ	15
3.1. ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ	
3.3. ПОДГОТОВКА К РАБОТЕ	
3.3.1. Назначение органов управления и подключения	
4. ПОРЯДОК РАБОТЫ	
4.1. Интерфейс оператора	
4.2. Измерения	
4.2.1. Измерение напряжений и токов	
4.2.2. Измерение мощности	
4.2.3. Измерение углов	
4.2.4. Измерение гармоник	
4.2.5. Форма сигнала	
4.2.6. Усреднение	
4.2.7. Энергия	
4.3. РЕГИСТРАЦИЯ И ПКЭ	
4.3.1. Введение	
4.3.2. Регистрация	
4.3.3. Измерения и регистрация при аккумуляторном питании	
4.3.4. Формат архивов	
4.3.5. Текущие значения ПКЭ	
4.4. ОСЦИЛЛОГРАФИРОВАНИЕ	
4.4.1. Введение	
<i>4.4.3. Тип запуска</i>	
4.5. Оымен С ПК 4.6. Настройки	
4.6.1. Уровни доступа	
4.6.2. Схема подключения	
4.6.3. Установка пределов	
4.6.4. Подсветка дисплея	
4.6.5. Автоблокировка меню	
4.6.6. Язык	
4.6.7. Коррекция уставок	
4.6.8. Дата и время	
4.6.9. Смена паролей	
4.6.10. Память	
4.6.11. Реактивная мощность в архивах	
4.6.12. Настройки ПКЭ	
4.6.13. Версия программного обеспечения	

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	73
6. ХРАНЕНИЕ	74
7. ТРАНСПОРТИРОВАНИЕ	75
8. МАРКИРОВКА И ПЛОМБИРОВАНИЕ	76
9. ГАРАНТИИ ИЗГОТОВИТЕЛЯ	77
10. СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	79
11. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	79
12. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	80
13. СВЕДЕНИЯ О ПОВЕРКЕ	81
<i>приложение А</i> . типы токоизмерительных клещей	82
ПРИЛОЖЕНИЕ Б. СХЕМЫ ПОЛКЛЮЧЕНИЯ	92

Введение

Настоящее руководство по эксплуатации (далее — РЭ) распространяется на приборы для измерения показателей качества электрической энергии и электроэнергетических величин «Энерготестер ПКЭ-А» (далее — Приборы) и содержит сведения, необходимые для его эксплуатации, технического обслуживания, транспортирования и хранения, а также сведения, удостоверяющие гарантии изготовителя, сведения о поверке, свидетельства о приемке и упаковывании.

Приборы выпускаются в различных модификациях, имеющих следующее обозначение:

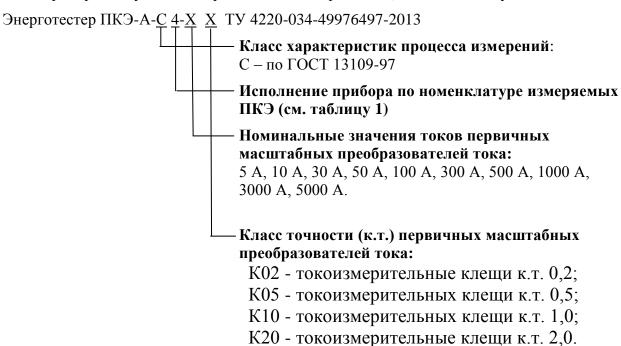


Таблица 1. Номенклатура измеряемых ПКЭ для исполнения 4

Наименование ПКЭ
Установившееся отклонение напряжения
Отклонение частоты
Коэффициент несимметрии напряжений по обратной последовательности
Коэффициент несимметрии напряжений по нулевой последовательности
Суммарный коэффициент гармонических составляющих напряжения
Коэффициенты гармонических составляющих напряжения
Длительность провала напряжения
Глубина провала напряжения
Длительность временного перенапряжения
Коэффициент временного перенапряжения (по ГОСТ13109-97)
Кратковременная доза фликера
Длительная доза фликера

Примеры обозначения Прибора при заказе:

Энерготестер ПКЭ-A-C4–10К02–30/300/3000К20 (прибор с токоизмерительными клещами 10, 30, 300, 3000 А и регистрацией ПКЭ по ГОСТ Р 13109-97).

1. Требования безопасности

1.1. При работе с Прибором необходимо соблюдать требования безопасности, установленные «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок» (ПОТ РМ-016–2001, РД 153-34.0-03.150–00).

Пояснение символа


на верхней панели Энерготестера ПКЭ-А приведено в п. 3.3.2 «Включение / выключение Энерготестера ПКЭ-А».

1.2. По безопасности Приборы соответствуют ГОСТ Р 52319-05, категория измерений — II и III, степень загрязнения — 1, усиленная изоляция.

Степень защиты оболочек по ГОСТ 14254 — IP51.

1.3. Максимальное значение фазных напряжений в измерительных входах должно быть не более 400 В относительно нейтрали.

Максимальное значение линейных напряжений между измерительными входами должно быть не более 600 В.

2. Описание Приборов и принципа их работы

2.1. Назначение

Прибор предназначен для:

- измерения и регистрации основных показателей качества электрической энергии (ПКЭ), установленных ГОСТ 13109–97;
- измерения и регистрации основных параметров электрической энергии в однофазных и трехфазных электрических сетях (действующих значений напряжений и токов при синусоидальной и искаженной формах кривых; активной, реактивной и полной электрической мощностей);
- проверки работоспособности и правильности подключения энергетических измерительных преобразователей напряжения, тока, активной и реактивной мощностей на местах их эксплуатации;
- проверки работоспособности и правильности подключения однофазных и трехфазных счетчиков электрической энергии без разрыва токовых цепей;
- измерения параметров вторичных цепей (мощности нагрузки трансформаторов и падения напряжения) в системах учета электрической энергии.

Прибор может применяться для:

- энергетического обследования предприятий производителей и потребителей электрической энергии (энергоаудит);
- проведения сертификации электрической энергии;
- технологического контроля и анализа (мониторинга) качества электрической энергии;
- наладки и испытания систем электроснабжения.

2.2. Условия эксплуатации

Рабочие условия эксплуатации Прибора

- температура окружающего воздуха, °С..... от минус 20 до 55;
- относительная влажность воздуха, % до 90 при 30 °C;
- атмосферное давление, кПа (мм рт. ст.) от 70 до 106,7 (537–800).

Электропитание Прибора осуществляется от аккумуляторных батарей или от сети переменного тока напряжением от 90 В до 264 В, (50 ± 2.5) Гц при коэффициенте несинусоидальности не более 5 % через блок питания с выходным напряжением постоянного тока 12,6 В, 0,8 А. При подключении Прибора к сети переменного тока происходит автоматическая подзарядка аккумуляторных батарей.

2.3. Состав Прибора

2.3.1 Прибор поставляется в комплектации, соответствующей договору поставки. В состав комплекта поставки входят устройства, приведенные в таблице 2.1.

Таблица 2.1. Комплект поставки Прибора

Наименование	Обозначение	Кол-во			
Прибор «Энерготестер ПКЭ-А»	MC2.725.003	1 шт.			
Блок питания Энерготестера ПКЭ-А с кабелем 220 В $(U_{\text{вых}}=12,6\text{ B},I_{\text{вых}}=0,8\text{ A})$	MC2.087.030	1 шт.			
Аккумуляторные батареи типа АА		4 шт.			
Программное обеспечение «Энергомониторинг» на CD		1 шт.			
Щупы тестерные (4 цвета)		4 шт.			
Кабель НВ	MC4.853.029	1 шт.			
Кабель для связи с ПК по USB		1 шт.			
Руководство по эксплуатации	MC2.725.003 РЭ	1 экз.			
Методика поверки	MC2.725.003-001 MΠ	1 экз.			
Упаковка		1 шт.			
, · · · · · · · · · · · · · · · · · · ·	Дополнительные принадлежности (поставляются в соответствии с договором поставки)				
Клещи токоизмерительные 10 А		3 шт.			
Шунт $I_{\rm H} = 10~{\rm A}$ для клещей $10~{\rm A}$	MC5.064.001-00	1 шт.			
Клещи токоизмерительные 100 А		3 шт.			
Шунт $I_{\rm H} = 10~{\rm A}$ для клещей $100~{\rm A}$	MC5.064.001-01	1 шт.			
Шунт $I_{\text{\tiny H}} = 100 \; \text{A}$ для клещей $100 \; \text{A}$	MC5.064.001-02	1 шт.			
Клещи токоизмерительные 1000 А		3 шт.			
Шунт $I_{\rm H} = 100~{\rm A}$ для клещей $1000~{\rm A}$	MC5.064.001-03	1 шт.			
Шунт $I_{\scriptscriptstyle \rm H} = 1000~{\rm A}$ для клещей $1000~{\rm A}$	MC5.064.001-04	1 шт.			
Клещи токоизмерительные 300 / 3000 А	MC5.064.420	3 шт.			

2.4. Технические характеристики

2.4.1. Каналы измерения напряжения подключаются к контролируемой сети непосредственно или через масштабные преобразователи: трансформаторы напряжения, делители и др. Энерготестер ПКЭ-А имеет два канала для прямого измерения фазного/межфазного) напряжения с номинальными значениями 10 (17); 240 (415) В.

Каналы измерения тока подключаются через масштабные преобразователи, входящие в комплект прибора (приложения A и Б). Прибор имеет три канала для измерения тока с номинальными первичными токами 10; 100; 1000; 30; 300; 3000 A.

2.4.2. Прибор обеспечивает измерение основных ПКЭ по ГОСТ13109–97 и других электроэнергетических величин в диапазонах и с пределами допускаемых основных погрешностей измерения, соответствующими данным, приведенных в таблицах 2.2 и 2.3.

Прибор обеспечивает непрерывное измерение, расчет, отображение на графическом дисплее и накопление (с последующей передачей на компьютер (ПК)) результатов измерений.

Результаты измерений, полученные от АЦП, обрабатываются в соответствии с заложенной программой.

Таблица 2.2. Основные метрологические характеристики Энерготестера ПКЭ-А-С4

Измеряемые величины	Диапазоны измерений	Пределы и вид допускаемой основ- ной погрешности измерений	Примечание
1. Среднеквадратическое (действующее) значение напряжения переменного тока [U], В	от $0,01U_{\scriptscriptstyle \rm H}$ до $1,5U_{\scriptscriptstyle \rm H}$	Относительная: $\pm [0,1+0,01((U_{\scriptscriptstyle \rm H}/U)-1)]$ %	$U_{\rm H} = 10 \ (17); 240 \ (415) \ {\rm B}$
2. Среднеквадратическое значение основной (первой) гармонической составляющей напряжения [U $_1$], В	от $0,01U_{\scriptscriptstyle \rm H}$ до $1,5U_{\scriptscriptstyle \rm H}$	Относительная: $\pm [0,2+0,02((U_{\rm H}/U_I)-1)]$ %	
3. Напряжение постоянного тока $[U_D]$, B	от $0,01U_{\scriptscriptstyle \rm H}$ до $1,5U_{\scriptscriptstyle \rm H}$	Относительная: $\pm [0,2+0,02((U_{\text{H}}/U_{\text{D}})-1)]$ %	
4. Угол фазового сдвига между основными гармоническими составляющими входных напряжений, градус	от 0 до 360	Абсолютная: ±0,1	$0.2U_{\scriptscriptstyle m H} \leq U \leq 1.5U_{\scriptscriptstyle m H}$
5. Частота переменного тока $[f_I]$, Γ ц	от 45 до 75	Абсолютная: ±0,01	$0.1U_{\scriptscriptstyle m H} \leq U \leq 1.5U_{\scriptscriptstyle m H}$
6. Отклонение частоты [Δf], Γ ц	от -5 до +25	Абсолютная: ±0,01	$0.1U_{\scriptscriptstyle m H} \leq U \leq 1.5U_{\scriptscriptstyle m H}$
7. Установившиеся отклонение напряжения [δU_{y}], %	от -100 до +40	Абсолютная: ±0,2	
8. Коэффициент несимметрии напряжения по обратной и нулевой последовательностям, %	от 0 до 50	Абсолютная: ±0,2	
9. Коэффициент искажения синусоидальности кривой напряжения [K_U], %	от 0 до 49,9	Абсолютная: ±0,05 Относительная: ±5,0 %	$0.1U_{ ext{ iny H}} \leq U \leq 1.5U_{ ext{ iny H}} \ K_U < 1.0 \ K_U \geq 1.0$
10. Коэффициент n -й гармонической составляющей напряжения $[K_{U(n)}]$ (n от 2 до 40), %	от 0 до 49,9	Абсолютная: ±0,05 Относительная: ±5,0 %	$0.1U_{ ext{ iny H}} \leq U \leq 1.5U_{ ext{ iny H}} \ K_{U(n)} < 1.0 \ K_{U(n)} \geq 1.0$
11. Напряжение прямой, нулевой и обратной последовательностей, В	от 0 до $U_{\scriptscriptstyle m H}$	Абсолютная: $\pm 0,002 U_{\scriptscriptstyle \mathrm{H}}$	
12. Длительность провала напряжения, с	от 0,02	Абсолютная: ±0,02	
13. Глубина провала напряжения, %	от 10 до 100	Относительная: 10,0 %	
14. Коэффициент временного перенапряжения, отн. ед.	от 1,10 до 7,99	Относительная: 2,0 %	
15. Длительность временного перенапряжения	от 0,01	Абсолютная: ±0,02	
16. Кратковременная доза фликера	от 0,25 до 10	Относительная: 5,0 %	$\Delta U/U \le 20 \%$ при колебаниях, имеющих форму меандра
17. Текущее время	_	Абсолютная: ±2,0 с/сут	В диапазоне температур от -20 до 55 °C

Таблица 2.3. Дополнительные метрологические характеристики для Энерготестера ПКЭ-А-С4-ХКХХ

	Диапазоны		ускаемой основной и измерений		
Измеряемые величины	измерений	Энерготестер ПКЭ-А-С4- XXK05	Энерготестер ПКЭ-А-С4- ХХК10	Примечание	
1. Среднеквадратическое (действующее) значение силы переменного тока [<i>I</i>], А	от 0.051 по 1.51	Относительная:		Номинальные значения измеряемых действующих значений переменного тока соответствуют номинальным значениям мас-	
	от $0.05I_{\text{н}}$ до $1.5I_{\text{н}}$	$\pm[0,5+0,05((I_{\text{H}}/I)-1)]$ %	$\pm[1,0+0,05((I_{\text{H}}/I)-1)]\%$	штабных преобразователей тока из комплек та поставки (токоизмерительные клещи): 10, 30, 100, 300, 1000, 3000 A	
2. Среднеквадратическое значение		Относи	тельная:		
тока основной (первой) гармонической составляющей тока $[I_1]$, A	от $0.05I_{\text{H}}$ до $1.5I_{\text{H}}$	$\pm[0,5+0,05((I_{\text{H}}/I_{1})-1)]\%$	$\pm[1,0+0,05((I_{\text{H}}/I_{I})-1)]\%$		
3. Угол фазового сдвига между основными гармоническими составляющими напряжения и тока одной фазы, градус	от 0 до 360	Абсолютная: ±0,5		$0.2I_{\scriptscriptstyle m H} \leq I \leq 1.5I_{\scriptscriptstyle m H}; \ 0.2U_{\scriptscriptstyle m H} \leq U \leq 1.5U_{\scriptscriptstyle m H}$	
4. Активная электрическая мощ- ность <i>P</i> , Вт		Относительная:		$P_{H} = Q_{H} = S_{H} = U_{H} \cdot I_{H};$ $0.1I_{H} \le I \le 1.5I_{H}$	
	от 0,01 $P_{\rm H}$	±0,5 %	±1,0 %	$K_P = 1$	
	до 1,8 $P_{\scriptscriptstyle \mathrm{H}}$	±1,0 %	±2,0 %	$0.5 \le K_P < 1.0$	
		$\pm[1,0+0,1((P_{H}/P)-1)]\%$	$\pm[2,0+0,1((P_{H}/P)-1)]\%$	$0.2 \le K_P < 0.5$	
5. Реактивная электрическая мощ-		Относительная:		$0.1I_{\text{H}} \le I \le 1.5I_{\text{H}}$	
ность Q , вар	от 0,01Q _н до 1,8 Q _н	±1,0 %	±2,0 %	$0.5 \le K_{RP} \le 1.0$	
		±2,0 %	±4,0 %	$0.25 \le K_{RP} < 0.5$	
6. Полная электрическая мощность		Относительная:			
S , $B \cdot A$	от 0,01S _н до 1,8S _н	±1,0 %	±2,0 %	от 0,1 S _н до 1,8 S _н	
		±2,0 %	±4,0 %	от 0,05 $S_{\rm H}$ до 0,1 $S_{\rm H}$	

Окончание таблицы 2.3

**	Диапазоны	Пределы и вид допускаемой основной погрешности измерений		-	
Измеряемые величины	измерений	Энерготестер ПКЭ-А-С4- XXK05	Энерготестер ПКЭ-А-С4- ХХК10	Примечание	
7. Коэффициент мощности K_P	1.01.0	Абсолютная:		0.050 2.250	
	от –1,0 до +1,0	±0,02	±0,04	от 0.05Р _н до 2.25Р _н	
8. Суммарный коэффициент гар-				$0.1I_{\scriptscriptstyle m H} \le I \le 1.5I_{\scriptscriptstyle m H}$	
монических составляющих тока (Коэффициент искажения сину-	от 0 до 49,9	Абсолют	ная: ±0,05	$K_I < 1.0$	
соидальности тока) [K_I], %		Относительная: ±5,0 %		$K_I \ge 1,0$	
9. Коэффициент гармонической составляющей тока порядка h,				h от 2 до 40; $0.1I_{\text{H}} \leq I \leq 1.5I_{\text{H}}$	
$[K_I(h)]$, %	от 0 до 49,9	Абсолютная: ±0,05		$K_{I}(h) < 1,0$	
		Относительная: ±5,0 %		$K_{I}(h) > 1,0$	
10. Среднеквадратическое значе-		Абсолютная:			
ние силы тока прямой последовательности, нулевой последовательности и обратной последовательности, А	от 0 до $I_{\scriptscriptstyle m H}$	±0,01I _н	±0,02I _н	$0.05I_{\text{H}} \le I \le 1.5I_{\text{H}}$	
11. Активная мощность прямой $P_{1(1)}$, нулевой $P_{0(1)}$ и обратной $P_{2(1)}$	от 0,01Р _Н	Абсолютная:		0.11 < 1 < 1.51	
$F_{1(1)}$, нулевои $F_{0(1)}$ и обратнои $F_{2(1)}$ последовательностей, Вт	до 1,8Рн	±0,01P _н	±0,02P _н	$0.1I_{\scriptscriptstyle \rm H} \le I \le 1.5I_{\scriptscriptstyle \rm H}$	
Примечание - $K_{RP} = Q/S$ – коэффициент реактивной мощности.					

10

Прибор обеспечивает индикацию на графическом дисплее результатов измерения:

- значений основных ПКЭ;
- параметров электрической сети со временем усреднения 3 с, 1 или 30 мин.

Объем индикации измеренных значений напряжения — пять значащих цифр и знак полярности (варианты отображения значений напряжения: $\pm x.xxxx$; $\pm xx.xxx$; $\pm xx.xxx$). Объем индикации измеренных значений тока — пять значащих цифр и знак полярности (варианты отображения значений тока: $\pm x.xxxx$; $\pm xx.xxx$; $\pm xx.xxx$; $\pm xxxxxx$. Объем индикации измеренных значений мощности — минимум четыре значащие цифры и знак полярности (варианты отображения значений мощности: $\pm x.xxxx$; $\pm xx.xxx$; $\pm xxx.xx$; $\pm xxxxx$.

По выбору оператора значение напряжения может индицироваться с учетом коэффициента преобразования входного измерительного трансформатора.

Индицируемая единица измерения напряжения:

- В при напряжении до 999,99 В;
- кВ при напряжении свыше 999,99 В.
- 2.4.3. Прибор обеспечивает измерение параметров электрической сети и ПКЭ, если амплитудные значения тока не превышают 210 %, а амплитудные значения напряжения не превышают 170 % от номинальных действующих значений соответствующих поддиапазонов измерений.
- 2.4.4. Прибор обеспечивает расчет и регистрацию статистических данных по ПКЭ: наибольших и наименьших, верхних и нижних значений ПКЭ и количества измерений, попавших в интервал нормально допустимых значений (НДЗ), предельно допустимых значений (ПДЗ) и не попавших в эти пределы за каждые сутки.

Интервал усреднения для установившегося отклонения напряжения составляет 60 с, для отклонения частоты — 20 с, для остальных $\Pi K \ni -3$ с.

Глубина регистрации — 512 сут.

Прибор обеспечивает расчет и регистрацию параметров электрической сети одновременно с временами усреднения 3 с, 1 и 30 мин (см. п. 4.3.2).

Прибор обеспечивает расчет и регистрацию значений и длительностей провалов напряжения и перенапряжений с глубиной хранения до 16 000 событий.

Прибор обеспечивает расчет и регистрацию значений кратковременной дозы фликера с интервалом измерения 10 мин и глубиной регистрации 512 сут.

Прибор обеспечивает регистрацию данных, поступающих непосредственно с АЦП, с частотой $10~\rm k\Gamma \mu$ (3 фазы напряжения и 3 фазы тока) — режим осциллографирования. Глубина регистрации — $12~\rm muh$ ($1~\rm u$ при отсутствии других архивов).

Архивирование результатов измерений производится во внутренней энергонезависимой памяти Прибор. Время хранения накопленной информации при выключении питания не ограничено.

Прибор обеспечивает обмен данными с ПК по последовательному интерфейсу USB.

2.4.6. Встроенные часы текущего времени фиксируют время регистрации результатов измерения по всем измеряемым характеристикам, вносимым в память Прибора (его архив). В Приборе имеется возможность установки времени и даты. Питание часов осуществляется от встроенной литиевой батареи со временем непрерывной работы не менее 2-х лет.

- 2.4.7. В Приборе предусмотрена двухуровневая система паролей, определяющая доступ к соответствующим режимам работы.
- 2.4.8. Прибор выдерживает перегрузку до $600~\mathrm{B}$ по каналам измерения фазного напряжения (среднеквадратичные значения) и до $2I_{\mathrm{H}}$ А по каналам измерения тока (среднеквадратичные значения) в течение $0.5~\mathrm{c}$.

Прибор обеспечивает свои метрологические характеристики через 15 мин после снятия перегрузки.

- 2.4.9. Входное сопротивление каждого канала измерения напряжения Прибора не менее 0,4 МОм, входная емкость не более 30 пФ.
- 2.4.10. Прибор обеспечивает свои метрологические характеристики в соответствии с таблицами 2.2 и 2.3 по истечении времени установления рабочего режима не более 15 мин.
- 2.4.11. При отключении Прибора вследствие пропадания напряжения питания и полного разряда аккумуляторов Прибор будет находиться в отключенном состоянии до момента появления напряжения питания, при этом текущая архивная запись будет закрыта аналогично штатному завершению режима регистрации. При восстановлении питания, если исчезновение напряжения питания произошло во время режима регистрации и привело к отключению Прибора, произойдет включение Прибор и автоматический переход в режим регистрации с ранее установленными параметрами.
- 2.4.12. Время непрерывной работы Прибора при питании от аккумуляторов (при отсутствии напряжения питающей сети, после одного цикла зарядки аккумуляторов) не менее 2 ч.
- 2.4.13. Полная мощность, потребляемая Прибором от сети переменного тока при питании через блок питания, не превышает 8 В·А
- 2.4.14. Габаритные размеры Прибора (длина × ширина × высота) не более $250 \times 120 \times 80$ мм.

Масса Прибора (без аксессуаров) не превышает 1,0 кг.

2.4.15. Среднее время наработки на отказ — не менее 44 000 ч. Средний срок службы — не менее 10 лет.

2.5. Устройство и работа

2.5.1. Структурная схема Энерготестера ПКЭ-А представлена на рисунке 2.1.

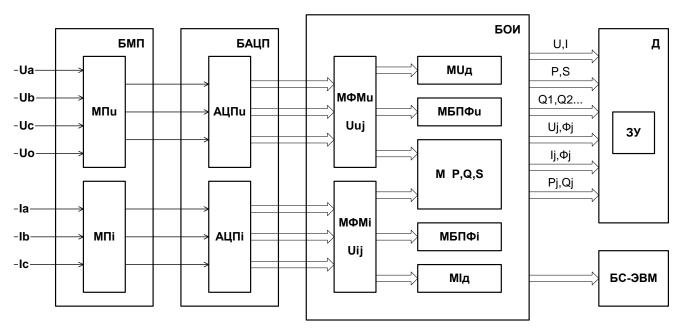


Рисунок 2.1. Структурная схема Энерготестера ПКЭ-А:

БМП — блок масштабных преобразователей напряжения (МП $_{\rm U}$) и тока (МП $_{\rm I}$);

БАЦП — блок АЦП напряжения (АЦП $_{\rm U}$) и тока (АЦП $_{\rm I}$); **БОИ** — блок обработки информации; **МФМ** $_{\rm U}$, **МФМ** $_{\rm I}$ — модули формирования массивов мгновенных значений;

МUд, **М**Ід — модули вычисления действующих значений; **М P**,**Q**,**S** — модуль вычисления активной, реактивной и полной мощностей; **МБПФ** $_{\rm U}$, **МБПФ** $_{\rm I}$ — модули быстрого преобразования Фурье;

Д — блок отображения информации (графический дисплей и клавиатура);

ЗУ — запоминающее устройство; **БС-ЭВМ** — блок связи с ПК

2.5.2. Работа Энерготестера ПКЭ-А основана на использовании принципа аналогоцифрового преобразования (АЦП) с использованием «метода выборок». В БМП трехфазные напряжения и токи подвергаются масштабному преобразованию до уровня 5 В, соответствующего значению диапазона измерения U и I. Мгновенные значения сигналов преобразуются в цифровые коды шестью АЦП и передаются в БОИ, где формируются массивы мгновенных значений сигналов напряжения Uuj и тока Uij (j — номер выборки). Результаты вычисленных значений измеряемых величин, полученные с помощью программных модулей, отображаются на дисплее Д, сохраняются в памяти и выводятся при необходимости на ПК.

Энерготестер ПКЭ-А одновременно может производить измерения всех параметров цепи переменного тока: тока, напряжения, частоты, углов, коэффициентов гармонических составляющих тока и напряжения (с 1-й по 40-ю), активной, реактивной и полной мощностей.

2.5.3. БМП включает в себя токоизмерительные клещи (или измерительные трансформаторы тока, 3 шт.), калиброванные индивидуально с соответствующим измерительным каналом, и три делителя напряжения. Реле БМП управляются командами от платы процессора. Процессор выдает команды потенциалами для переключения входов напряжения. Контроллер выводит текущее значение предела измерения на графический дисплей. Реле служат для переключения пределов входных напряжений для входных преобразователей.

- 2.5.4. Плата АЦП представляет собой 6 идентичных независимых каналов преобразования входного аналогового сигнала ±5 В в 16-разрядное представление (1 знаковый + 15 значащих бит) мгновенного значения на входе. Канал построен на элементной базе фирм «Analog Device» и «Техаз Instruments» и содержит две микросхемы: входной усилитель и собственно АЦП. В качестве входного усилителя используется микросхема AD8675, имеющая малое смещение выходного напряжения, малый температурный дрейф и ультрамалые входные токи, что необходимо для согласования с масштабными преобразователями. Входное сопротивление канала более 50 МОм. Сигнал с выхода усилителя поступает на вход собственно АЦП, в качестве которого используется микросхема ADS8556, обеспечивающая полное 16-разрядное преобразование «без потерь кода» и выдающая информацию в последовательном коде процессору по его запросу. Плата измерительная обеспечивает оцифровку уровней напряжений, поданных на измерительные входы, и вывод результатов в плату процессоров.
- 2.5.5. Плата процессора обеспечивает управление работой Энерготестера ПКЭ-А, проведение расчетов по массивам оцифрованных выборок от измерительной платы, сохранение результатов в энергонезависимой памяти, счет времени, обмен с внешними устройствами (компьютерами), вывод результатов на дисплей, прием команд и данных от клавиатуры. Плата контроллера является центральной платой, отвечающей за работоспособность Энерготестера ПКЭ-А в целом. Основу контроллера составляют сигнальный процессор производства фирмы «Техаз Instr.» и ПЛИС-матрица производства фирмы «Altera». Такое решение позволяет гибко и оперативно менять программное обеспечение Энерготестера ПКЭ-А, не затрагивая его аппаратной части.

Результаты полученных от АЦП данных обрабатываются в соответствии с заложенной программой, регистрируются в памяти прибора (при работе в режиме регистрации) и отображаются на графическом дисплее. Расчет производится на основании окон, содержащих 4096 выборок АЦП, причем используется 50-процентное временное наложение таких окон, в результате которого текущие значения рассчитываются каждые $(4096 \cdot 0.5/10\,000)$ с, т. е. приблизительно 5 раз в секунду. Далее для целей регистрации и отображения эти значения усредняются с периодами усреднения 3 с, 1 мин и 30 мин.

- 2.5.6. Запоминающее устройство служит для хранения данных, полученных в результате измерений.
- 2.5.7. Блок питания служит для выработки необходимых напряжений для платы процессора и измерительной платы.
- 2.5.8. Дисплей графический жидкокристаллический устанавливается на переднюю панель и соединяется с платой процессора. Клавиатура мембранная устанавливается на переднюю панель и соединяется с платой процессора. С помощью клавиатуры можно управлять видом отображаемых данных, вводить требуемые значения и выполнять другие сервисные и технологические операции.

3. Подготовка Прибора к работе

3.1. Эксплуатационные ограничения

Если Прибор внесен в помещение после пребывания снаружи при температуре окружающей среды ниже -5 °C, он должен быть выдержан в нормальных условиях (по ГОСТ 22261–94) в выключенном состоянии не менее 4 ч. В случае резкого изменения (перепада) температуры окружающей среды на величину более 10 °C необходимо выдержать Прибор в рабочих условиях эксплуатации в выключенном состоянии не менее 30 мин.

Внимание!

При попадании воды или иных жидкостей внутрь корпуса использование Прибора не допускается.

При температуре ниже -10 °C возможно снижение контрастности жидкокристаллического дисплея, не влияющее на технические характеристики Прибора.

3.2. Распаковывание Прибора

После извлечения Прибора из упаковки проводят наружный осмотр, убеждаются в отсутствии механических повреждений, проверяют наличие пломб предприятия-изготовителя (при необходимости).

Проверяют комплектность Прибора в соответствии с таблицей 2.1.

3.3. Подготовка к работе

3.3.1. Назначение органов управления и подключения

В таблице 3.1 указано назначение клавиш, расположенных на лицевой панели прибора.

Таблица 3.1. Назначение клавиш Энерготестера ПКЭ-А

Клавиша	Выполняемая функция
09	- ввод цифровых величин
A , Y	- передвижение курсора вверх / вниз по пунктам меню и при вводе цифровых величин
∢, ➤	- передвижение курсора влево / вправо по пунктам меню и при вводе цифровых величин
«ENT»	- вход в выбранный пункт меню;- ввод данных;- запуск выбранного режима;- вставка символа в режиме ввода имени
«ESC»	- «возврат»; - выход из режима; - выход из текущего меню в меню более высокого уровня
« F »	- переход в режим установки пределов измерения в меню «Настройки»; - переход в / из режима ввода символа при вводе имени объекта (счетчика)
•	- включение / отключение подсветки дисплея
«ON»	- включение Энерготестера ПКЭ-А

На рисунке 3.1 представлен вид верхней панели Энерготестера ПКЭ-А.

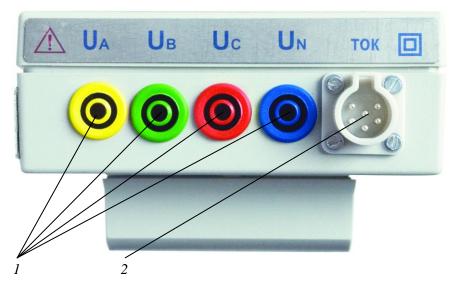


Рисунок 3.1. Верхняя панель Энерготестера ПКЭ-А:

1 — клеммы для подключения к фазным напряжениям и нейтрали на номинале 240 В; 2 — соединитель для подключения к первичным преобразователям тока (токовым клещам)

На рисунке 3.2 представлен вид лицевой и боковой панелей Энерготестера ПКЭ-А.

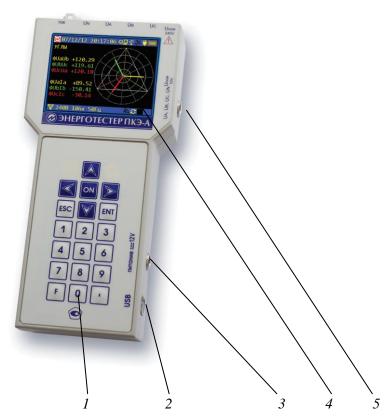


Рисунок 3.2. Лицевая и боковая панели Энерготестера ПКЭ-А

1 — клавиатура; 2 — USB-разъем для подключения к ПК; 3 — разъем питания; 4 — графический дисплей; 5 — разъем для подключения к фазным напряжениям и нейтрали на номинале $10~\mathrm{B}$

3.3.2. Включение / выключение Прибора

Внимание!

В целях безопасности подключение (отключение) к измеряемым цепям рекомендуется производить при полностью снятом напряжении на них. В противном случае подключение (отключение) к измеряемым цепям должно производиться в соответствии с действующими правилами электробезопасности.

Прибор имеет три соединителя (Ua, Ub, Uc) для подключения фазных напряжений, один (U_N) для подключения нейтрали в цепях напряжения и один соединитель в цепях тока (Ia, Ib, Ic). Цепи тока гальванически развязаны между собой с помощью токоизмерительных клещей. Цепи напряжения выполнены симметрично и имеют общую точку — нейтраль. Токоподводящие кабели должны использоваться только из комплекта поставки. Необходимо следить также за тем, чтобы сами соединения были правильно и надежно закреплены во избежание перегрева мест контакта и возрастания переходного сопротивления.

Внимание!

Не допускается подключение токоизмерительных клещей к цепям постоянного тока.

Внимание!

Измерительные зажимы кабелей, а также токоизмерительные клещи, должны быть первоначально подсоединены к Прибору, а затем — к токонесущим проводникам измеряемой сети.

Внимание!

Не допускается образование окисных пленок и грязи в местах разрыва магнитопровода токоизмерительных клещей. Поверхности разрыва магнитопровода должны плотно прилегать друг к другу. Несоблюдение данных требований ведет к ухудшению метрологических характеристик Прибора.

В приложениях А и Б к данному РЭ приведены различные способы подключения цепей Прибора.

Включение Прибора производят в следующей последовательности:

- 1) подключить кабель блока питания к разъему питания Прибора (Рисунок Б.1 приложения Б):
- 2) подключить блок питания к питающей сети с помощью сетевого кабеля;
- 3) включить прибор кнопкой «ON».

Примечание

Время непрерывной работы Прибора при питании от аккумуляторов (при отсутствии напряжения питающей сети) зависит от количества циклов заряда аккумуляторов. При использовании Ni-Mh аккумуляторов емкостью $2700~\text{MA} \cdot \text{ч}$ время непрерывной работы Прибора составляет не менее 2~ч при 1~цикле заряда длительностью 4,5~ч.

Внимание!

После первого включения Прибора рекомендуется не подключать адаптер питания до полного разряда аккумуляторов (до выключения Прибора). После чего следует подключить к Прибору блок питания и произвести полную зарядку аккумуляторных батарей (пока не погаснет индикатор «Заряд»).

Через несколько секунд после включения прибора завершаются процедуры самотестирования и инициализации, и Энерготестер ПКЭ-А переходит в режим первоначальной установки. Во время инициализации проверяется правильность работы составных частей Энерготестера ПКЭ-А, загружаются программы, относящиеся к обработке сигналов и вычислению их параметров, а на экране отображаются версия внутреннего программного обеспечения и степень готовности прибора к работе (Рисунок 3.3).

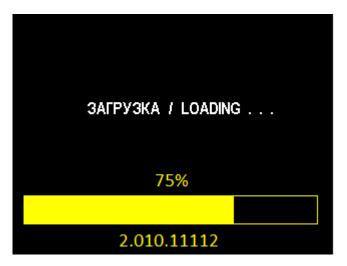


Рисунок 3.3. Экран загрузки

По окончании загрузки программ на экране Прибора появляется запрос пароля (Рисунок 4.1). После правильного ввода пароля Прибор сразу же готов к работе (для обеспечения метрологических характеристик (таблица 2.2) необходимо выдержать Прибор в течение не менее 5 мин во включенном состоянии).

Выключение Прибора производится нажатием и удерживанием в течение 4 с кнопки **«ESC»** в главном меню прибора.

В Приборе реализован режим «Автоблокировка меню». Переход в режим «Автоблокировка меню» происходит, если в течение 5 мин на Приборе не нажимались клавиши (см. п. 4.6.5).

4. Порядок работы

4.1. Интерфейс оператора

При включении питания выполняется самотестирование Прибора, после чего на экране появляется запрос пароля (Рисунок 4.1).

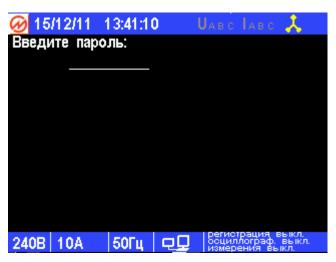


Рисунок 4.1. Меню ввода пароля

В Приборе реализована двухуровневая система паролей. В зависимости от того, под паролем какого уровня пользователь вошел в систему, ему будут доступны различные пункты меню «**Настройки»** (см. п. 4.6). Пароли обоих уровней должны содержать по 10 цифр.

При заводской поставке в Приборе запрограммированы следующие пароли:

- пароль первого уровня 0000000000;
- пароль второго уровня 2222222222.

Примечание

При установленном пароле первого уровня 000000000 вход в меню Энерготестера ПКЭ-А возможен нажатием клавиши **«ENT»** без ввода пароля, и это равносильно входу под паролем первого уровня.

При вводе пароля набираемые цифры отображаются знаком «*». Для завершения ввода необходимо нажать клавишу **«ENT»**.

Интерфейс оператора ПРибора представляет собой набор вложенных меню, перемещение по которым осуществляется с помощью клавиш «ENT», «ESC», ▼, ▲, <, ▶. Расположение и назначение органов управления и индикации приведены на Рисунок 3.2 и в таблице 3.1.

Независимо от того в каком из пунктов меню находится Прибор, на экране отображаются верхняя и нижняя строки состояния.

В верхней строке состояния (Рисунок 4.2) отображаются:

- текущие дата и время 10/03/11 14:02:13;

- индикатор уровня заряда аккумуляторов 🗷 .

В нижней строке состояния (рис. 4.3) отображаются:

- пределы измерений по напряжению 240В и току 10А;
- номинальная частота 50Гц;
- пиктограмма подключения USB-интерфейса □□;
- Текущее состояние осциллограф, выкл. осциллограф, выкл. осциллограф.

Рисунок 4.2. Верхняя строка состояния Энерготестера ПКЭ-А

240B 10A	50Гц		грегистрация выкл. госциллограф, выкл. гизмерения вкл.
----------	------	--	--

Рисунок 4.3. Нижняя строка состояния Энерготестера ПКЭ-А

Прибор может иметь не более шести различных комбинаций пределов измерения токов из следующих возможных значений:

- при подключении через токовые клещи: К5A, К10A, К50A, К100A, К300A, К500A, К1000A, К3000A, К5000A;
- при подключении через токовые клещи повышенной точности: Кв5A, Кв10A, Кв1000A.

Прибор имеет два предела измерения напряжений — 10 и 240 В.

Прибор может проводить измерения на номинальной частоте 50 или 400 Гц. При работе на номинальной частоте 400 Гц в главном меню Прибора доступен только режимы работы «Измерения» (см. п. 4.2).

Изменение схемы подключения, пределов измерения и номинальной частоты возможно в меню «**Настройки**» (см. п.п. 4.6.2, 4.6.3). Кроме того, оперативное изменение пределов измерения в большинстве случаев возможно с помощью «горячей» клавиши «**F**».

После ввода пароля на дисплее Прибора отображается главное меню (Рисунок 4.4). Оно состоит из четырех пунктов, реализующих различные режимы работы Прибора и установку его настроек.

Перемещение по пунктам главного меню осуществляется с помощью клавиш **У**, **▲**. Для входа в выбранный пункт меню необходимо нажать клавишу **«ENT»**.

Рисунок 4.4. Главное меню Энерготестера ПКЭ-А

Примечание.

Интерфейс оператора может изменяться в части порядка отображения информации. Данные изменения не влияют на технические и метрологические характеристики Прибора.

В Приборе реализован режим **«Автоблокировка меню»**. Переход в режим **«Автоблокировка меню»** происходит, если в течение 5 мин на Приборе не нажимались клавиши (см. п. 4.6.5).

4.2. Измерения

При выборе пункта главного меню «**Измерения**» на дисплее отображается подменю выбора режима измерений (Рисунок 4.5).

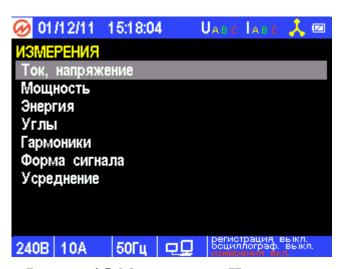


Рисунок 4.5. Меню режима «Измерения»

Подменю «Измерения» состоит из семи пунктов, в каждом из которых доступны для наблюдения различные параметры: мощности, напряжения и токи, гармоники, углы. Перемещение по пунктам меню «Измерения» осуществляется с помощью клавиш ▼ и ▲. Для входа в выбранный пункт меню и активизации процесса измерений необходимо нажать клавишу «ENT», для возврата в главное меню — клавишу «ESC».

В каждом из пунктов меню «**Измерения**» (кроме пункта «**Форма сигнала**») на экране отображаются текущие значения, рассчитанные в реальном времени. Информация на экране обновляется с частотой 1 раз в 3 с.

4.2.1. Измерение напряжений и токов

В режиме «**Ток, напряжение**» для наблюдения доступны два экрана, на которых отображаются измеренные значения токов и напряжений (Рисунок 4.6). Переход между экранами осуществляется по циклу клавишами **<**, **>**.

При трехфазной четырехпроводной схеме подключения на экране отображаются:

- измеренные действующие фазные и межфазные значения напряжений и токов;
- средневыпрямленные значения фазных напряжений и токов;
- средние (постоянная составляющая) значения фазных / межфазных напряжений.

При трехфазной трехпроводной схеме подключения на экране отображаются:

- измеренные действующие фазные значения токов и действующие межфазные значения напряжений;
- средневыпрямленные значения фазных токов;
- средние (постоянная составляющая) значения межфазных напряжений.

При однофазной двухпроводной схеме подключения на экране отображаются:

- измеренные действующие значения напряжения и тока;
- средневыпрямленные значения напряжения и тока;
- среднее (постоянная составляющая U_{DC}) значение напряжения (при отсутствии переменной составляющей напряжения соответствует подаваемому постоянному напряжению).

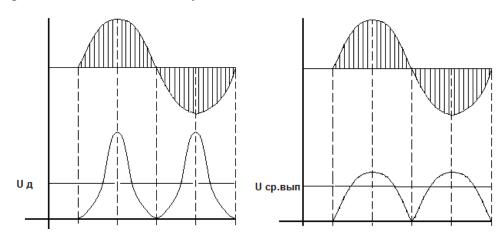
Рисунок 4.6. Экраны режима «Ток, напряжение» для различных схем подключения

Примечание

С физической точки зрения действующие (среднеквадратичные) значения напряжения и тока связаны с мощностью, выделяемой в активной нагрузке (например в лампе накаливания, кипятильнике и т. п.):

$$P = U_{_{\Pi}}I_{_{\Pi}} = U_{_{\Pi}}^{2}/R = I_{_{\Pi}}^{2}R,$$

где $U_{\scriptscriptstyle \rm I\hspace{-.1em}I},I_{\scriptscriptstyle \rm I\hspace{-.1em}I}$ — действующие (среднеквадратичные) значения напряжения и тока;

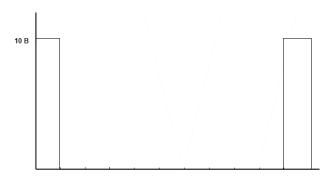

Р — мощность (активная), выделяемая в активной нагрузке;

R — активное сопротивление нагрузки.

В Энерготестер ПКЭ-А алгоритм вычисления действующего значения напряжения (тока) можно упрощенно представить следующим образом: мгновенные значения напряжения (тока), измеренные АЦП, возводятся в квадрат, затем вычисляется среднеарифметическое значение полученного сигнала и из него извлекается квадратный корень.

Среднее значение напряжения (то-ка) равно сумме мгновенных значений напряжения (то-ка) с учетом знака, т. е. постоянной составляющей измеренного сигнала.

Некоторые реальные физические величины (например сила, с которой электромагнит втягивает сердечник) пропорциональны средневыпрямленному значению напряжения (тока). В Энерготестере ПКЭ-А алгоритм вычисления *средневыпрямленного значения напряжения* (тока) можно упрощенно представить следующим образом: все мгновенные значения напряжения (тока), измеренные АЦП, считаются положительными (знак не учитывается), а затем вычисляется среднеарифметическое значение полученного сигнала.



Для постоянного напряжения (тока) все три величины равны между собой.

Для чисто синусоидального сигнала среднее значение равно нулю, а средневыпрямленное и действующее связаны постоянным коэффициентом.

Для несинусоидального сигнала все три вида напряжения (тока) могут отличаться друг от друга.

Например, рассмотрим сигнал напряжения в виде прямоугольных импульсов амплитудой 10 В, идущих со скважностью 10.

Действующее значение

$$U_{\rm A} = \sqrt{\frac{10^2 \text{ B}}{10}} \approx 3,16 \text{ B}.$$

Среднее и средневыпрямленное значения

$$U_{\rm cp} = U_{\rm cp.вып} = \frac{10 \,\mathrm{B}}{10} = 1 \,\mathrm{B}.$$

Если подать это напряжение на резистор сопротивлением 1 Ом, то выделится мощность

$$P = U_{\pi}I_{\pi} = 3,16 \cdot 3,16 = 10 \text{ Bt.}$$

Существует целый ряд приборов, которые измеряют средневыпрямленное значение напряжения (тока), но проградуированы в действующем значении (например, приборы магнито-электрической и электромагнитной системы). Необходимо помнить, что они показывают правильное значение напряжения (тока) только в случае чисто синусоидального сигнала (при несинусоидальной форме сигнала действующее значение измеряется приборами электродинамической системы).

Внимание!

Строка, отображающая средние значения токов, является технологической (входные токовые клещи не пропускают постоянную составляющую).

4.2.2. Измерение мощности

В режиме «Мощность» доступны для наблюдения три экрана: «Мощность активная» (Рисунок 4.7), «Мощность реактивная» (Рисунок 4.8) и «Мощность полная» (Рисунок 4.9). Переход между экранами осуществляется по циклу клавишами ◀, ➤.

При трехфазной четырехпроводной схеме подключения на экране отображаются:

- измеренные по каждой фазе и суммарные значения активной P, полной S и реактивной Q мощностей. Значения реактивной мощности рассчитываются по трем различным формулам:
 - $Q = \sqrt{S^2 P^2}$ (геометрический метод),
 - $Q = UI \cos(\varphi + 90)$ (метод перекрестного включения),
 - $Q = UI \sin \varphi$ (метод сдвига);
- коэффициент мощности по каждой фазе;
- действующие значения тока и напряжения по каждой фазе.

При трехфазной трехпроводной схеме подключения на экране отображаются:

- суммарные значения активной P, полной S и реактивной Q мощностей. Значения реактивной мощности рассчитываются по трем различным формулам:
 - $Q = \sqrt{S^2 P^2}$ (геометрический метод),
 - $Q = UI \cos(\phi + 90)$ (метод перекрестного включения),
 - $Q = UI \sin \varphi$ (метод сдвига);
- два слагаемых активной мощности и три слагаемых реактивной мощности, рассчитанной методом перекрестного включения;
- суммарный коэффициент мощности;
- действующие значения фазных токов;
- действующие значения межфазных напряжений.

Рисунок 4.7. Экраны режима отображения активной мощности для различных схем подключения

Рисунок 4.8. Экраны режима отображения реактивной мощности для различных схем подключения

Рисунок 4.9. Экраны режима отображения полной мощности для различных схем подключения

При однофазной двухпроводной схеме подключения на экране отображаются:

- \blacksquare значения активной P, полной S и реактивной Q мощностей. Значения реактивной мощности рассчитываются по двум различным формулам:
 - $Q = \sqrt{S^2 P^2}$ (геометрический метод),
 - $Q = UI \sin \varphi$ (метод сдвига);
- коэффициент мощности;
- действующие значения тока и напряжения.

Примечание

При измерении реактивной мощности методом сдвига, мгновенные значения напряжения перемножаются с мгновенными значениями тока, сдвинутыми на 90°.

При измерении реактивной мощности методом перекрестного включения, мгновенные значения фазных токов умножаются на мгновенные значения линейных напряжений.

Необходимо отметить, что в симметричной системе при отсутствии нелинейных искажений все три реактивные мощности совпадают между собой. При нарушении симметрии системы векторов напряжений ($U_{AB} \neq U_{BC} \neq U_{CA}$) реактивная мощность, измеренная по методу перекрестного включения, сильно отличается от первых двух. При наличии нелинейных искажений в цепях тока и напряжения реактивная мощность, измеренная по геометрическому методу, отличается от двух других. Таким образом, в реальных условиях все три реактивные мощности отличаются друг от друга.

Обычно в энергосистемах используются счетчики реактивной энергии одного типа (в России, как правило, реализующие метод перекрестного включения в трехфазных сетях и метод сдвига в однофазных).

Внимание!

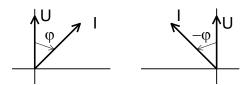
При действующих значениях токов и напряжений менее 1 % от номинала реактивная мощность методом сдвига не рассчитывается (отображаются нулевые значения).

Примечание

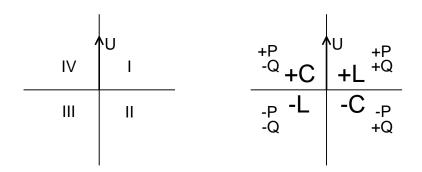
Для чисто синусоидального сигнала активная P, реактивная Q и полная S мощности рассчитываются по формулам:

$$P = U_{\pi}I_{\pi}\cos\varphi$$
, $Q = U_{\pi}I_{\pi}\sin\varphi$, $S = U_{\pi}I_{\pi}$,

где $U_{_{\rm I}},I_{_{\rm I}}$ — действующие (среднеквадратичные) значения напряжения и тока;


ф — угол сдвига между током и напряжением.

Коэффициент мощности $K_P = P/S$. Для чисто синусоидального сигнала


$$K_P = \frac{P}{S} = \frac{U_{\pi}I_{\pi}\cos\varphi}{U_{\pi}I_{\pi}} = \cos\varphi.$$

Коэффициент мощности может принимать значения от 1 до -1 и обычно пишется с буквой L или C, которые показывают характер нагрузки (например 0,52L; 0,83C; -0,92C). Хотя он обычно связан с углом сдвига между током и напряжением, возможна ситуация (например при больших искажениях в цепи тока), когда $K_P < 1$ при нулевом угле сдвига фазы между током и напряжением ($\phi = 0$, $\cos \phi = 1$). Чем больше отличие формы кривой тока и напряжения от чисто синусоидальной кривой, тем больше K_P отличается от $\cos \phi$.

Характер нагрузки может быть индуктивным и емкостным. При положительном угле между током и напряжением (ток отстает от напряжения) характер нагрузки индуктивный. При отрицательном угле между током и напряжением (ток опережает напряжение) характер нагрузки емкостной.

Вектор тока может находится в одном из четырех квадрантов:

	Ді	Vanarezan		
Квадрант	Угол между током и напряжением	Активная мощность	Реактивная мощность	Характер нагрузки
I	от 0° до 90°	от $U_{_{ m J}}I_{_{ m J}}$ до 0	от 0 до $U_{_{ m J}}I_{_{ m J}}$	Индуктивный
II	от 90° до 180°	от 0 до $-U_{_{ m I}}I_{_{ m I}}$	от $U_{_{ m J}}I_{_{ m J}}$ до 0	Отрицательный емкостной
III	от 180° до 270° (от –180° до –90°)	от $-U_{_{ m I}}I_{_{ m I}}$ до 0	от 0 до $-U_{_{ m I}}I_{_{ m I}}$	Отрицательный индуктивный
IV	от 270° до 360° (от –90° до 0°)	от 0 до $U_{_{\rm J}}I_{_{\rm J}}$	от $-U_{_{ m J}}I_{_{ m J}}$ до 0	Емкостной

Положительная активная мощность (энергия) соответствует режиму потребления, отрицательная — генерации. Положительная реактивная мощность (энергия) соответствует индуктивной нагрузке при потреблении и емкостной при генерации, отрицательная — емкостной нагрузке при потреблении и индуктивной при генерации.

Примечание

При измерении полной мощности нагрузки измерительного трансформатора тока используется $U_{\rm H} = 10~{\rm B}.$

4.2.3. Измерение углов

В режиме «Углы» на экране отображаются измеренные значения углов между напряжениями первой гармоники и между напряжением и током первой гармоники. В левой части дисплея отображаются цифровые значения углов в градусах, а в правой части — векторная диаграмма (Рисунок 4.10), на которой длинные векторы соответствуют напряжению, а короткие — току.

Для проверки правильности чередования фаз при трехфазной четырехпроводной схеме подключения убедитесь, что значения углов $\angle(U_{\mathrm{A}(1)},U_{\mathrm{B}(1)})$, $\angle(U_{\mathrm{B}(1)},U_{\mathrm{C}(1)})$ и $\angle(U_{\mathrm{C}(1)},U_{\mathrm{A}(1)})$ положительны (чередование по часовой стрелке).

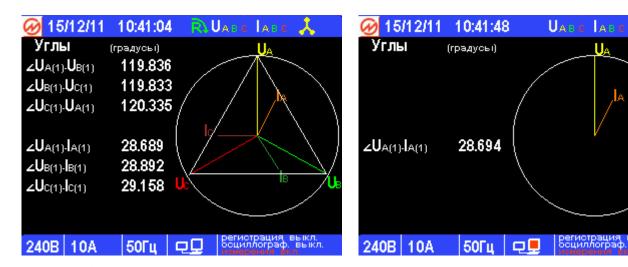


Рисунок 4.10. Экраны режима отображения угловых сдвигов для различных схем подключения

При *техфазных* схемах подключения на экране отображаются измеренные значения углов между фазными напряжениями первой гармоники и между напряжением и током первой гармоники каждой фазы.

При *однофазной двухпроводной* схеме подключения на экране отображается измеренное значение угла между напряжением и током первой гармоники.

Внимание!

При действующих значениях токов и напряжений менее 1 % от номинала параметры, отображаемые в режиме «Углы», не рассчитываются (отображаются значения углов между напряжениями (\sim 90°) и значения углов между напряжениями и токами (\sim -90°)).

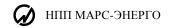
4.2.4. Измерение гармоник

В режиме «Гармоники» на экране отображаются (Рисунок 4.11):

- действующие значения первых гармоник напряжения и тока;
- коэффициенты искажения синусоидальности кривых напряжения и тока;
- частота первой гармоники;
- коэффициенты гармоник тока и напряжения с 1-й по 40-ю.

Примечание

При работе на номинальной частоте 400 Гц Энерготестер ПКЭ-А производит измерение коэффициентов гармоник тока и напряжения с 1-й по 12-ю. Изменение номинальной частоты возможно в меню «Настройки» (см. п. 4.6.3).


При *техфазной четырехпроводной* схеме подключения для наблюдения доступны шесть экранов: отдельно для напряжений и токов по каждой фазе. Переход между экранами осуществляется по циклу клавишами **◄**, **▶**.

При *техфазной трехпроводной* схеме подключения для наблюдения доступны шесть экранов: отдельно для трех межфазных напряжений и трех фазных токов. Переход между экранами осуществляется по циклу клавишами \checkmark , \gt .

При *однофазной двухпроводной* схеме подключения для наблюдения доступны два экрана: отдельно для напряжения и тока. Переход между экранами осуществляется по циклу клавишами **◄**, **▶**.

Примечание

При действующих значениях токов и напряжений менее 1% от номинала параметры, отображаемые в режиме «Гармоники», не рассчитываются (отображаются нулевые значения).

Рисунок 4.11. Экраны режима отображения гармонических составляющих напряжения и тока для различных схем подключения

4.2.5. Форма сигнала

В режиме **«Форма сигнала»** на экране отображаются формы фазных сигналов напряжений и токов (Рисунок 4.12). При входе в данный режим отображается экран с формой сигнала напряжения фазы A Ua. Отображение/скрытие форм сигналов Ia, Ua, Ib, Ub, Ic, Uc происходит при нажатии цифровых клавиш **«1»**, **«2»**, **«4»**, **«5»**, **«7»**, **«8»** соответственно.

Формы сигналов, отображаемые в данном режиме, соответствуют значениям входных сигналов в момент входа в этот режим. Для обновления отображаемых форм необходимо перезапустить замеры клавишей **«ENT»**.

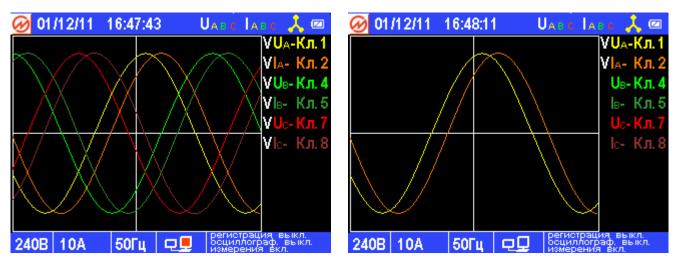


Рисунок 4.12. Экраны режима отображения форм сигналов

4.2.6. Усреднение

Примечание

Данный режим доступен только при работе Энерготестера ПКЭ-А на номинальной частоте 50 Гц. Изменение номинальной частоты возможно в меню «**Настройки**» (см. п. 4.6.3).

В режиме «**Усреднение**» на экране отображаются действующие значения напряжений и токов с заданным временем усреднения (Рисунок 4.13).

Примечание

Данный режим используется для измерения с помощью двух Энерготестеров ПКЭ-А падения напряжения в линии присоединения счетчика электроэнергии к измерительному трансформатору напряжения по аттестованной методике. Методика выполнения измерений доступна на сайте производителя прибора.

При входе в данный режим необходимо задать параметры усреднения:

- время усреднения;
- время начала усреднения.

Время усреднения может быть задано в диапазоне от 1 до 60 мин с дискретностью 1 мин.

Рисунок 4.13. Экраны режима отображения усредненных значений напряжений и токов

При входе в режим **«Усреднение»** время начала усреднения по умолчанию задается превышающим на 10 мин текущее время Энерготестера ПКЭ-А. При изменении времени начала усреднения следует учитывать, что оно не может быть меньше текущего времени Энерготестера ПКЭ-А. Если задать время начала усреднения меньше, чем текущее время Энерготестера ПКЭ-А, произойдет блокировка пункта **«Начать счет»**.

Заполнение бегущей строки на экране отображения усредненных значений, соответствующей времени усреднения, также происходит с дискретностью 1 мин.

Чтобы изменить параметры усреднения необходимо выбрать нужный пункт клавишами У и А, активировать его клавишей «ENT», ввести требуемое значение и нажать клавишу «ENT» для принятия нового значения или клавишу «ESC» для отмены ввода нового значения.

Для запуска режима **«Усреднение»** необходимо выбрать пункт **«Начать счет»** и нажать клавишу **«ENT»**, при этом пункт **«Начать счет»** изменится на **«Закончить счет»** (Рисунок 4.13). Расчет и отображение усредняемых параметров начнется, когда текущее время Энерготестера ПКЭ-А превысит заданное время начала усреднения, при этом в правом нижнем углу дисплея появится сообщение **«усреднение вкл.»**.

4.2.7. Энергия

Примечание

Данный режим доступен только при работе Энерготестера ПКЭ-А на номинальной частоте 50 Гц. Изменение номинальной частоты возможно в меню «Настройки» (см. п. 4.6.3).

В режиме «Энергия» для просмотра доступны 4 экрана:

- экран выбора типа запуска (Рисунок 4.14);
- измерение энергии нарастающим итогом (Рисунок 4.15);
- измерение энергии в режиме получасовок (текущие) (Рисунок 4.16);
- измерение энергии в режиме получасовок (предыдущие) (Рисунок 4.16).

Переход между экранами осуществляется по циклу клавишами ◀, ➤.

При входе в режим **«Энергия»** на экране отображается меню выбора типа запуска: **«Ручной»** или **«По времени»** (Рисунок 4.14). Перемещение по пунктам меню осуществляется клавишами **▼** и **∧**. Для выбора типа запуска необходимо нажать клавишу **«ENT»**.

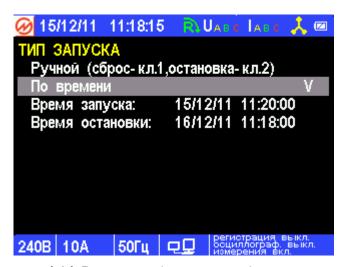


Рисунок 4.14. Режим отображения выбора типа запуска

При выборе типа запуска «**Ручной**» становятся активными две цифровые клавиши на Приборе — **«1»** и **«2»**.

При нажатии клавиши «1» происходит сброс измеренных значений параметров потребления энергии и измерения начинаются заново. Активация сброса доступна с экранов «Нарастающий итог», «Получасовка (текущая)» и «Получасовка (предыдущая)». При нажатии клавиши «2» происходит остановка измерений и заморозка всех экранов с полученными данными. Для возобновления измерений необходимо нажать клавишу «1».

При выборе типа запуска «По времени» активируются строки меню «Время запуска» и «Время остановки». По умолчанию время запуска устанавливается на 2 мин позже текущего времени Энерготестера ПКЭ-А, время остановки необходимо ввести самостоятельно. Для ввода нового значения времени запуска или остановки необходимо с помощью клавиш ✓ и ▲ подвести указатель к нужной строке и нажать клавишу «ENT», после чего курсор примет вид знака подчеркивания. С помощью клавиш ✓, ➤ нужно подвести курсор к требуемой позиции и цифровыми клавишами ввести новое значение. Для подтверждения ввода нового значения необходимо нажать клавишу «ENT», для отказа от ввода нового значения — клавишу «ESC». После любого из этих действий курсор примет прежний вид.

На экране измерения энергии нарастающим итогом (Рисунок 4.15) отображаются:

- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) потребляемые энергии по всем фазам суммарно;
- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) генерируемые энергии по всем фазам суммарно;
- время начала измерений в формате ДД/ММ/ГГ ЧЧ:ММ:СС;
- длительность измерений в формате СУТ. ЧЧ:ММ:СС.

Рисунок 4.15. Экран режима измерения энергии нарастающим итогом

На экране измерения получасовых значений энергии (текущих) (Рисунок 4.16) отображаются:

- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) потребляемые энергии по всем фазам суммарно;
- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) генерируемые энергии по всем фазам суммарно;
- время начала текущей получасовки в формате ДД/ММ/ГГ ЧЧ:ММ:СС;
- остаток времени текущей получасовки в формате ЧЧ:ММ:СС.

По истечении 30 мин измеренные значения энергии сбрасываются, и начинается новый 30-минутный цикл измерений. При этом накопленные значения энергии будут отображаться на экране «Получасовка (предыдущая)» до окончания текущей получасовки.

На экране измерения получасовых значений энергии (предыдущих) (Рисунок 4.16) отображаются:

- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) потребляемые энергии по всем фазам суммарно;
- измеренные нарастающим итогом активная (кВт·ч) и реактивная (квар·ч) генерируемые энергии по всем фазам суммарно;
- время начала измерений в формате ДД/ММ/ГГ ЧЧ:ММ:СС;
- время окончания измерений в формате ДД/ММ/ГГ ЧЧ:ММ:СС.

До окончания первой текущей получасовки на экране «Получасовка (предыдущая)» вместо значений отображаются прочерки (Рисунок 4.16).

Рисунок 4.16. Экран режима измерений получасовых значений энергии

Если в настройках Прибора включена автоблокировка меню, то во время нахождения прибора в режимах отображения энергии она отключается.

4.3. Регистрация и ПКЭ

4.3.1. Введение

При выборе пункта главного меню «**Регистрация и ПКЭ**» появляется доступ к запуску процессов измерения и просмотра ПКЭ, а также записи измеренных ПКЭ и усредненных значений параметров электрической сети в энергонезависимую память прибора (режим регистрации).

Меню «Регистрация и ПКЭ» (Рисунок 4.17) состоит из следующих пунктов:

- текущие значения ПКЭ;
- регистрация ПКЭ и усредненных значений параметров электрической сети;
- номинальные значения напряжения и частоты (по умолчанию установлены значения $U_{\text{ном.лин}} = 380 \text{ B}$, $U_{\text{ном.фаз}} = 219.4 \text{ B}$ и $F_{\text{ном}} = 50 \text{ Гц}$);
- тип уставок (по умолчанию установлены нормально и предельно допустимые значения ПКЭ в соответствии с ГОСТ 13109–97 для электрических сетей с напряжением 0,38 кВ).

Перемещение по пунктам меню **«Регистрация и ПКЭ»** осуществляется с помощью клавиш **▼** и **∧**. Для входа в выбранный пункт меню необходимо нажать клавишу **«ENT»**, для возврата в главное меню — клавишу **«ESC»**.

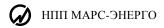


Рисунок 4.17. Меню «Регистрации и ПКЭ»

В случае если в приборе выделено недостаточно памяти, выдается предупреждающее сообщение: «ВНИМАНИЕ! Для полного расчета ПКЭ необходимо не менее 30 % памяти под трехсекундные архивы» (Рисунок 4.18) (см. п. 4.6.10).

Рисунок 4.18. Предупреждающее сообщение при недостаточном выделении памяти

Изменение номинальных значений напряжения и частоты и типа уставок в меню «**Регистрации и ПКЭ**» возможно только при включении Прибора под паролем 2-го уровня. При включении прибора под паролем 1-го уровня значения этих параметров недоступны для редактирования.

Редактирование значений параметров регистрации возможно только в режиме отсутствия регистрации и ожидания начала регистрации (редактирование значений параметров регистрации желательно осуществлять в режиме «регистрация выкл.»).

Для изменения номинальных значений напряжения и частоты необходимо подвести курсор к соответствующему параметру и нажать клавишу «ENT». С помощью цифровой клавиатуры и клавиш ◀, ➤ ввести нужные номинальные значения. Для ввода нового значения необходимо нажать клавишу «ENT», для отказа от ввода набранного значения — клавишу «ESC». При изменении номинального значения фазного или межфазного напряжения второе автоматически пересчитывается. При повторном включении Прибора по умолчанию применяются значения перечисленных параметров, установленные при предыдущей регистрации.

Для выбора типа уставок, в соответствии с которыми будут производиться измерения и расчет ПКЭ, необходимо подвести курсор к соответствующему пункту и нажать клавишу «ENT». В открывшемся окне (Рисунок 4.19) возможен выбор одного из четырех типов уставок по ГОСТ 13109−97 в соответствии с номинальным напряжением в точке присоединения к электрической сети, либо одного из двух вариантов пользовательских уставок. Все шесть типов уставок хранятся в памяти Прибора в двух вариантах: для однофазных (трехфазных четырехпроводных) и трехфазных трехпроводных сетей. Выбор соответствующего варианта происходит автоматически в зависимости от схемы подключения Прибора к сети (см. п. 4.6.2). По умолчанию все типы пользовательских уставок соответствуют ГОСТ 13109−97 для сетей 0,38 кВ. Выбор типа уставок осуществляется с помощью клавиш и .А. Для ввода нового типа уставок необходимо нажать клавишу «ENT», для отказа от изменения типа уставок — клавишу «ESC». После любого из этих действий произойдет возврат в меню «Регистрация и ПКЭ».

Рисунок 4.19. Меню выбора типа уставок

Изменение интервалов нормально и предельно допустимых значений ПКЭ в пользовательских уставках возможно с ПК (программа «Энергомониторинг Электросетей») или в меню «Коррекция уставок» (см. п. 4.6.7). Изменение уставок по ГОСТ 13109–97 недоступно. При присоединении к электрической сети с номинальным напряжением 6–20; 35 или 110–330 кВ через измерительные трансформаторы и выборе значений уставок по ГОСТ 13109–97 для соответствующего типа сети, номинальное напряжение в Энерготестере ПКЭ-А необходимо установить в соответствии со значением напряжения на вторичных обмотках измерительных трансформаторов. В дальнейшем, при передаче архива на ПК с помощью ПО «Энергомониторинг электросетей», необходимо будет ввести на ПК параметры использованных измерительных трансформаторов, для того чтобы все значения измеренных параметров электросети были пересчитаны с учетом коэффициентов трансформации (более подробно см. «Программа "Энергомониторинг электросетей" версия 5.1 и выше программного комплекса "Энергомониторинг". Руководство пользователя»).

4.3.2. Регистрация

Внимание!

Перед постановкой Прибора на регистрацию рекомендуется удалить все хранящиеся в памяти прибора архивы, проведя форматирование всей памяти (см п. 4.6.10).

При входе в режим «**Регистрация**» на экране отображаются (Рисунок 4.20):

- имя объекта, на котором будет производиться регистрация ПКЭ;
- дата и время начала и окончания регистрации;
- время наибольших нагрузок;
- архивные зоны ПКЭ;
- запрос на начало регистрации.

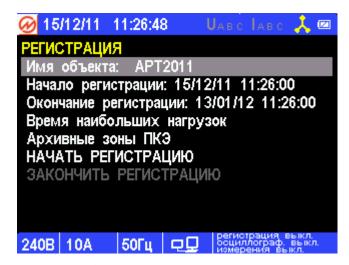


Рисунок 4.20. Окно режима «Регистрация»

Для ввода имени объекта необходимо подвести курсор к пункту «**Имя объекта**» и нажать клавишу «**ENT**», при этом на экране отобразится список имен объектов (Рисунок 4.21), который может быть заранее загружен с ПК. Для выбора имени объекта необходимо подвести курсор к требуемому имени и нажать клавишу «**ENT**», после чего откроется окно ввода имени (Рисунок 4.22).

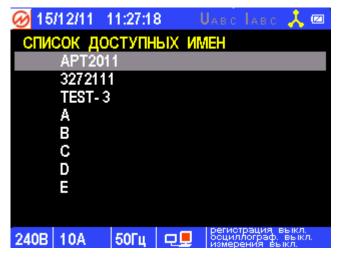


Рисунок 4.21. Окно выбора имени объекта

Рисунок 4.22. Окно ввода имени объекта

В случае если выбранное имя не требуется изменять, необходимо нажать клавишу «ENT» или «ESC», после чего произойдет возврат в режим «Регистрация» (Рисунок 4.20) с выбранным именем объекта. При необходимости пользователь может ввести оригинальное имя объекта.

Для ввода нового имени объекта необходимо клавишами **<**, ➤ подвести курсор к позиции, в которую требуется вставить символ и нажать клавишу **«**F». После нажатия клавиши **«**F» произойдет переход в поле выбора символа. Выбор нужного символа осуществляется клавишами **∨**, **∧**, **<**, ➤. Чтобы вставить выбранный символ необходимо нажать клавишу **«**ENT», при этом курсор в поле имени передвинется в следующую позицию. Ввод цифровых символов производится с помощью соответствующих цифровых клавиш на клавиатуре. Чтобы исправить ошибочно введенный символ необходимо вернуться в поле имени повторным нажатием клавиши **«**F» и повторить описанные выше действия. Для сохранения введенного имени необходимо нажать клавишу **«**ENT», для отказа от набранного имени — клавишу **«**ESC». После любого из этих действий произойдет возврат в режим **«**Perистрация» (Рисунок 4.20).

Дата и время начала регистрации по умолчанию устанавливаются равными текущему времени Прибора, а дата и время окончания — на месяц больше. Для изменения этих значений необходимо с помощью клавиш ▼ и ▲ подвести указатель к нужному пункту и нажать клавишу «ENT». Затем с помощью цифровой клавиатуры и клавиш ◀, ▶ ввести нужные значения.

Перед постановкой Прибора на регистрацию пользователь может задать диапазоны начала и окончания наибольших и наименьших нагрузок, при этом расчет значений установившегося отклонения напряжения будет вестись отдельно в режимах наибольших и наименьших нагрузок, а также в суточном режиме.

При входе в режим **«Время наибольших нагрузок»** отображаются (Рисунок 4.23):

- время начала первого временного диапазона режима наибольших нагрузок;
- время окончания первого временного диапазона режима наибольших нагрузок;
- время начала второго временного диапазона режима наибольших нагрузок;
- время окончания второго временного диапазона режима наибольших нагрузок.

Временем наименьших нагрузок считается весь временной диапазон, не заданный как временной диапазон режима наибольших нагрузок.

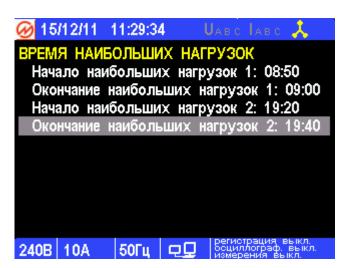


Рисунок 4.23. Окно ввода диапазонов наибольших нагрузок при регистрации ПКЭ

При первом входе в режим регистрации в новом приборе значения времени начала и окончания наибольших нагрузок устанавливаются равными:

- начало наибольших нагрузок 1 08:00;
- окончание наибольших нагрузок 1 13:00;
- начало наибольших нагрузок 2 14:00;
- окончание наибольших нагрузок 2 23:00.

Значения времени начала / окончания наибольших нагрузок задаются в диапазоне от 00:00 до 24:00 с дискретностью 10 мин.

Для изменения значений каких-либо параметров, необходимо с помощью клавиш **∨** и **∧** подвести указатель к нужному параметру и нажать клавишу **«ENT»**. Затем с помощью цифровой клавиатуры и клавиш **≺**, **>** ввести нужные значения. Редактирование значений параметров регистрации возможно только в режиме отсутствия регистрации и ожидания начала регистрации **(редактирования значений параметров регистрации желательно осуществлять в режиме «регистрация выкл.»). При редактировании значений диапазонов наибольших нагрузок необходимо учитывать, что время начала наибольших нагрузок 1 (2) должно быть меньше времени окончания наибольших нагрузок 1 (2).**

Если временной диапазон наибольших нагрузок переходит через полночь, то задавать его следует в виде двух диапазонов: один — до 24:00, второй — с 00:00 (Рисунок 4.24).

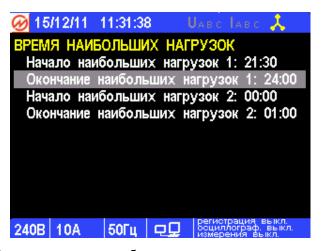
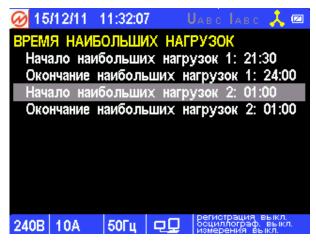



Рисунок 4.24. Ввод диапазона наибольших нагрузок при переходе через 00:00

Если временной диапазон наибольших нагрузок всего один, то время начала и окончания второго диапазона наибольших нагрузок должны совпадать (Рисунок 4.25):

Рисунок 4.25. Ввод значений диапазонов наибольших нагрузок при наличии только одного диапазона

В случае если значения времени начала и окончания обоих интервалов наибольших нагрузок равны, расчет значений будет вестись без учета режима наибольших нагрузок (расчет значений установившегося отклонения напряжения будет вестись только в суточном режиме).

В режиме «**Архивные зоны ПКЭ**» пользователь может посмотреть степень заполненности архивных зон, предназначенных для хранения статистических данных о ПКЭ: количества измерений ПКЭ, попавших в интервалы нормально допустимых значений (НДЗ), предельно допустимых значений (ПДЗ) и не попавших в эти пределы в течение суток (при этом время усреднения установившегося отклонения напряжения составляет $60 \, \mathrm{c}$, отклонения частоты — $20 \, \mathrm{c}$, остальных ПКЭ — $3 \, \mathrm{c}$).

Всего в энергонезависимой памяти Прибора имеется 512 архивных зон ПКЭ. В каждой архивной зоне хранится архив за одни сутки. Смена архивных зон происходит автоматически по циклу. Если в течение одних суток создается несколько архивов, то каждый новый архив автоматически записывается в новую архивную зону. Если Прибор поставлен на архивацию на несколько суток, смена архивной зоны происходит автоматически при наступлении очередных суток.

В окне **«Архивные зоны ПКЭ»** каждая ячейка соответствует одной архивной зоне: зеленый цвет — архивная зона не заполнена, красный цвет — заполнена.

Для начала регистрации необходимо подвести указатель к пункту «НАЧАТЬ РЕГИСТРАЦИЮ» (Рисунок 4.20) и нажать клавишу «ENT». При этом произойдет переход в окно «Длительность записи архивов» (Рисунок 4.26). В этом окне отображается информация о длительности записи архивов значений ПКЭ и параметров электрической сети. Прибор регистрирует значения этих величин одновременно с временем усреднения 3 с, 1 и 30 мин, создавая трехсекундные, одноминутные и тридцатиминутные архивы. Распределение объема памяти между этими тремя архивами осуществляется в меню «Память» (см. п. 4.6.10). Так же в этом окне необходимо подтвердить начало регистрации.

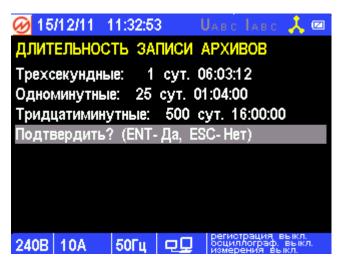


Рисунок 4.26. Длительность записи архивов

После подтверждения начала регистрации запускается процесс измерения и расчета ПКЭ в соответствии с выбранным типом уставок и сохранения их в архиве, а также измерения и расчета параметров электрической сети одновременно с временем усреднения 3 с, 1 и 30 мин. Расчет ПКЭ производится по формулам, приведенным в ГОСТ 13109–97.

Начать регистрацию можно либо с текущего момента (регистрация начнется с момента времени, кратного выбранному времени усреднения), либо с заранее установленных даты и времени.

В нижней строке экрана отображается текущий режим регистрации:

- «ожидание регистрации» это сообщение индицируется, если Прибор запрограммирован на начало регистрации с определенного времени, которое еще не наступило, и если еще не началась очередная минута текущего времени;
- «идет регистрация» это сообщение индицируется, если Прибор выполняет регистрацию;
- **«регистрации выкл.»** это сообщение индицируется, если Прибор не выполняет регистрацию.

Процесс регистрации ПКЭ при необходимости можно остановить до достижения времени окончания регистрации. Для этого необходимо подвести указатель к пункту «ЗАКОНЧИТЬ РЕГИСТРАЦИЮ» (Рисунок 4.20) и нажать клавишу «ENT».

После окончания регистрации происходит расчет статистических параметров созданного архива. Процесс расчета статистики отображается в виде прогресс-бара «Расчет статистики» (Рисунок 4.27) на экране Прибора. В этот период времени отсутствует связь с ПК, но меню прибора не блокируется и можно параллельно осуществлять в нем работу и даже проводить следующую регистрацию данных. Связь с ПК восстановится только после окончания расчета статистики.

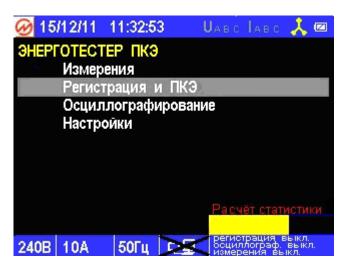


Рисунок 4.27. Прогресс бар «Расчет статистики»

При отключении Прибора вследствие пропадания напряжения питания и полного разряда аккумуляторов прибор будет находиться в отключенном состоянии до момента появления напряжения питания, при этом текущая архивная запись будет закрыта аналогично штатному завершению режима регистрации. При восстановлении питания произойдет включение Прибора и автоматический переход в режим регистрации с ранее установленными параметрами (в случае если текущее время не превысило заданное время окончания режима регистрации). При этом в памяти Прибора будет создана новая архивная запись, а для записи информации о ПКЭ произойдет автоматический переход к очередной зоне (аналогично выходу и повторном входу в режим регистрации).

Значения всех ПКЭ, измеряемых в текущий момент, можно наблюдать во время регистрации, во время ожидания начала регистрации и не проводя регистрации. Для этого необходимо в меню «Регистрация и ПКЭ» активировать подпункт «Текущие значения ПКЭ» (см. п. 4.3.5).

4.3.3. Измерения и регистрация при аккумуляторном питании

Использование Прибора (проведение измерений и регистрации, считывание результатов из Прибора на ПК) возможно как от аккумуляторных батарей (4 элемента Ni-Cd или Ni-Mh типа AA, напряжение 1,25 B), так и от гальванических элементов (неперезаряжаемых батареек, 4 солевых или щелочных элемента типа AA, напряжение 1,5 B).

В верхней строке состояния (Рисунок 4.2) отображается индикатор уровня заряда аккумуляторов. Во время работы прибора от сети происходит его зарядка, в течение которой индикатор мигает. После полного заряда индикатор перестает мигать.

Если во время проведения работ по регистрации данных уровень заряда аккумулятора становится низким, то на экране появляется предупреждающее сообщение (Рисунок 4.28). В этот момент запись данных в архивы прекращается, и прибор переходит в режим ожидания сетевого питания. После возобновления сетевого питания Прибор автоматически продолжит регистрацию с момента ее прекращения. При этом в полученных архивах будут отсутствовать данные за отрезок времени, равный времени нахождения на экране сообщения о низком уровне заряда батарей.

Рисунок 4.28. Предупреждающее сообщение о низком уровне заряда батарей

Внимание!

В процессе записи архивов нельзя извлекать аккумуляторы из батарейного отсека. В противном случае записываемый архив не сохраняется в памяти прибора.

Внимание!

В процессе эксплуатации Прибора с батарейками АА запрещается подключать адаптер питания во избежание взрыва или протекания батареек и последующего выхода прибора из строя.

При подключении адаптера происходит заряд аккумуляторов до номинального напряжения током 500 мА. При установке других аккумуляторов убедитесь, что эти аккумуляторы позволяют проводить заряд таким током.

Примечание

При работе от аккумуляторов или батареек длительность работы прибора зависит от емкости (м $A \cdot v$) элементов, их типа и состояния (новизны).

Оценить время работы Прибора можно исходя из уровня его потребления:

- 3,5 Bt (700 мA для 4 аккумуляторов Ni-Mh) во время измерения или регистрации;
- 1,5 Вт (300 мА для 4 аккумуляторов Ni-Mh) при отключенных измерениях и регистрации.

Таким образом, для комплекта аккумуляторов с реальной емкостью около $2000 \text{ мA} \cdot \text{ч}$ время автономных измерений / регистрации будет составлять $2000 \text{ мA} \cdot \text{ч}$ / 700 мA = 2 ч 50 мин.

4.3.4. Формат архивов

Сохраняемая в архиве информация разделена на три независимых блока:

- информация о ПКЭ;
- усредненные значения ПКЭ и параметров электрической сети;
- информация о провалах и перенапряжениях.

При постановке Прибора на архивирование, информация сохраняется независимо во всех трех блоках.

Информация о ПКЭ

В этом архиве сохраняются суточные архивы за последние 512 сут. Данная информация необходима для принятия решения о соответствии или несоответствии качества

электроэнергии требованиям ГОСТ. Информация о ПКЭ сохраняется в следующем формате:

- тип и значения уставок;
- схема подключения (3-ф. 4-пр., 3-ф. 3-пр., 1-ф. 2-пр.);
- номинальные значения напряжения и частоты;
- дата и время начала и окончания периода наблюдений;
- имя объекта;
- время начала режима наибольших нагрузок (время окончания режима наименьших нагрузок);
- время окончания режима наибольших нагрузок (время начала режима наименьших нагрузок);
- период фликера;
- значения каждого из ПКЭ в виде:
 - количество измерений, попавших в интервал НДЗ,
 - количество измерений, попавших в интервал ПДЗ,
 - количество измерений, вышедших за пределы ПДЗ,
 - наибольшее (наименьшее) значение за период наблюдения,
 - верхнее (нижнее) значение ПКЭ за период наблюдения.

Данная информация сохраняется по следующим ПКЭ (усреднение значений каждого параметра производится за 3 с за исключением $\delta U_{\rm v}$ — 1 мин и Δf — 20 с):

- отклонение частоты Δf ,
- установившиеся отклонение фазных/межфазных напряжений и напряжения прямой последовательности в режимах суточных $\delta U_{\rm y}$, наибольших $\delta U_{\rm y}^{\rm I}$ и наименьших $\delta U_{\rm y}^{\rm II}$ нагрузок,
 - \blacksquare коэффициент искажения синусоидальности кривой напряжения K_U по каждой фазе,
- коэффициенты несимметрии напряжения по обратной K_{2U} и нулевой K_{0U} последовательностям,
- коэффициенты гармонических составляющих напряжения $K_{U(n)}$ со 2-й по 40-ю гармонику по каждой фазе;
 - статистическая информация о провалах и перенапряжениях за сутки:
- \blacksquare количество провалов напряжения за сутки по каждой фазе отдельно и по трехфазной системе в целом N,
- \blacksquare суммарное время провалов напряжения за сутки по каждой фазе отдельно и по трехфазной системе в целом $T_{\text{сум}}$,
 - \blacksquare длительность самого длинного провала за сутки T_{\max} ,
 - \blacksquare глубина самого длинного провала δU ,
 - \blacksquare глубина самого глубокого провала за сутки $\delta U_{\rm max}$,
 - \blacksquare длительность самого глубокого провала T,
- \blacksquare количество перенапряжений за сутки по каждой фазе отдельно и по трехфазной системе в целом N,
- \blacksquare суммарное время перенапряжений за сутки по каждой фазе отдельно и по трехфазной системе в целом $T_{\text{сум}},$
 - \blacksquare длительность самого длинного перенапряжения за сутки T_{max} ,
 - \blacksquare коэффициент перегрузки самого длинного перенапряжения $K_{\text{пер},U}$,
 - \blacksquare коэффициент перегрузки самого большого перенапряжения за сутки $K_{\text{пер.}U\,\text{max}}$,
 - \blacksquare длительность самого большого перенапряжения T;
 - значения дозы фликера $P_{\rm st}$ (усреднение 10 мин и 2 ч) за сутки по каждой фазе.

В энергонезависимой памяти Прибора существует 512 архивных зон для хранения статистических данных о ПКЭ. В каждой архивной зоне храниться архив за одни сутки. Переход к очередной зоне происходит автоматически при наступлении очередных суток, а также при выходе и повторном входе в режим архивирования (даже если продолжительность архивирования не превышала 24 ч). Время смены суток при многосуточной архивации (через каждые 24 ч с момента начала регистрации или при смене суток) можно настроить в меню «Настройки ПКЭ» (см. п. 4.6.13). Переход к очередной зоне осуществляется по циклу, т. е. после 512-й зоны произойдет переход к 1-й зоне, при этом ранее сохраненная в ней информация будет затерта новыми данными, и т. д.

Информация о ПКЭ, сохраняемая в архиве, доступна для просмотра только на ПК. Так же на ПК, основываясь на значениях массивов кратковременной дозы фликера, производится расчет длительной дозы фликера $P_{\rm lt}$. На основании данной информации на ПК можно автоматически создавать отчеты о ПКЭ.

Внимание!

Если в настройках ПКЭ (см. п. 4.6.13) включен расчет статистики КU, то для полного расчета ПКЭ необходимо не менее 30 % памяти выделить под трехсекундные архивы. В противном случае верхние значения для K_U , K_{2U} , K_{0U} , $K_{U(n)}$ не будут рассчитаны корректно.

Необходимо учитывать тот факт, что расчет показателей K_U , K_{2U} , K_{0U} , $K_{U(n)}$ осуществляется по окончании каждого расчетного периода (24 ч), при этом процесс регистрации не прекращается. По окончании регистрации расчет этих параметров за последние 24 ч может занять до 45 мин.

Усредненные значения ПКЭ и параметров электрической сети

В этом архиве сохраняются значения измеряемых ПКЭ и параметров электрической сети одновременно с временами усреднения 3 с, 1 и 30 мин. В архиве сохраняется информация по следующим параметрам:

- действующие значения переменного напряжения (фазные и межфазные);
- действующие значения напряжений первых гармоник (фазные и межфазные);
- действующие значения переменного тока;
- действующие значения фазных токов первых гармоник;
- углы между фазными напряжениями первых гармоник;
- углы между фазными напряжениями и токами первых гармоник;
- активная, реактивная (рассчитанная различными методами) и полная мощности по каждой фазе и суммарная мощность;
 - коэффициенты мощности по каждой фазе и суммарный коэффициент;
 - частота переменного тока;
 - отклонение частоты;
- установившееся отклонение фазных / межфазных напряжений и напряжения прямой последовательности;
- коэффициенты несимметрии напряжений по нулевой и обратной последовательностям;
 - коэффициент искажения синусоидальности тока и напряжения по каждой фазе;
 - токи прямой, обратной и нулевой последовательностей;
 - напряжения прямой, обратной и нулевой последовательностей;
 - активная мощность прямой, обратной и нулевой последовательностей;

- фазовый угол между напряжением и током прямой, обратной и нулевой последовательностей;
 - уровень гармоник напряжений и токов (со 2-й по 40-ю) по каждой фазе;
 - \blacksquare активная электрическая мощность n-й гармоники (n от 1 до 40);
 - \blacksquare фазовый угол между фазным напряжением и током n-й гармоники (n от 2 до 40).

Информация об усредненных значениях ПКЭ и параметров электрической сети хранится в энергонезависимой памяти, организованной в виде кольцевого буфера. Одна запись включает в себя все измеренные значения за один интервал усреднения. Переход от одной записи к следующей происходит автоматически по кольцу: после того как буфер полностью заполнится, новые значения будут записываться на место самых старых, затирая их.

Обработка данных и запись архивов в память ведется с задержкой, кратной соответствующему времени усреднения:

- для трехсекундных на 3 с;
- для одноминутных на 1 мин;
- для тридцатиминутных на 30 мин.

Например, при записи 30-минутного архива с 11:17 до 16:04 последняя запись будет датироваться 15:30, т. е. каждая запись в архивах средних идентифицируется временем ее начала.

Объем энергонезависимой памяти, предназначенной для архивов усредненных значений ПКЭ и параметров электрической сети, пользователь может перераспределять по своему усмотрению (см. п. 4.6.10). По умолчанию память распределена следующим образом:

- для трехсекундных архивов 30 % (1 сут 06:03:12);
- для одноминутных архивов 30 % (25 сут 01:04:00);
- для тридцатиминутных архивов 10 % (250 сут 00:00:00).

Оставшиеся 30 % отведены под архивы осциллограмм (см. п. 4.4).

Например, через 16 сут регистрации в памяти Энерготестера ПКЭ-А будут содержаться:

- усредненные за 3 с параметры за последние 1 сут 06:03:12;
- усредненные за 1 мин параметры за последние 16 сут регистрации;
- усредненные за 30 мин параметры за последние 16 сут регистрации.

Информация об усредненных значениях ПКЭ и параметров электрической сети, сохраняемая в архиве, доступна для просмотра только на ПК, где можно оценить динамику изменения измеренных параметров за весь период наблюдения. На основании данной информации на ПК можно автоматически создавать отчеты для дальнейшего детального анализа.

Информация о провалах и перенапряжениях

В данном архиве сохраняется детальная информация о каждом провале и перенапряжении в следующем формате:

- тип события (провал или перенапряжение);
- фаза, по которой произошло событие (A, B, C);
- время начала события;
- время окончания события;
- длительность события;
- глубина провала или коэффициент перенапряжения;

• служебная информация.

Информация о провалах и перенапряжениях хранится в энергонезависимой памяти, организованной в виде кольцевого буфера, объемом 16 000 записей. Переход от одной записи к следующей происходит автоматически по кольцу: после того как буфер полностью заполниться, новые значения будут записываться на место самых старых, затирая их.

Информация о провалах и перенапряжениях, сохраняемая в архиве, доступна для просмотра только на ПК.

4.3.5. Текущие значения ПКЭ

В режиме **«Текущие** значения ПКЭ» доступны для наблюдения значения всех ПКЭ, измеряемых Прибором, которые разбиты на несколько окон (Рисунок 4.29–4.31), переход между которыми осуществляется по циклу клавишами **◄**, **▶**.

Для возврата из режима «**Текущие значения ПКЭ**» в главное меню необходимо нажать клавишу «**ESC**».

Текущие значения ПКЭ можно наблюдать как во время регистрации, так и не проводя регистрации.

Текущие значения ПКЭ обновляются на дисплее со временем, равным времени усреднения конкретного параметра:

- U_{v} , $U_{A(1)}$ и δU 1 мин;
- Δf 20 c;
- остальные параметры 3 с.

Перемещение по этим окнам осуществляется по циклу клавишами **◄**, **▶**. Ниже приведен перечень окон с доступными для наблюдения измеряемыми параметрами ПКЭ.

В окнах с коэффициентами гармоник с помощью клавиш У, А реализована вертикальная прокрутка.

Значения кратковременной дозы фликера определены только для трехфазной четырехпроводной и однофазной двухпроводной схем подключения.

В окнах кратковременной дозы фликера кроме самих значений кратковременной дозы фликера $P_{\rm st}$ также отображаются:

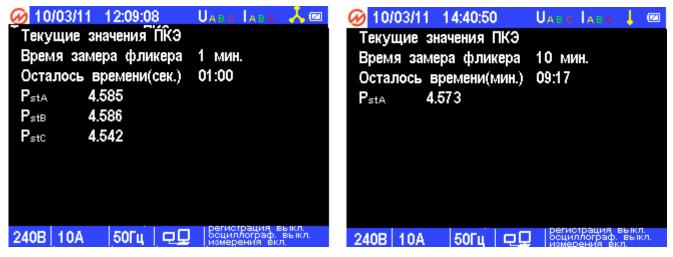

- интервал времени измерения кратковременной дозы фликера 10 мин;
- время, оставшееся до окончания очередного замера кратковременной дозы фликера;
- значения кратковременной дозы фликера, обновление значений происходит по окончании очередного интервала времени измерения каждые 10 мин.

Рисунок 4.29. Окна отображения текущих значений основных ПКЭ для различных схем подключения

Рисунок 4.30. Окна отображения текущих значений коэффициентов искажения синусоидальности и гармонических составляющих напряжений и токов для различных схем подключения

Рисунок 4.31. Окно отображения кратковременной дозы фликера для трехфазной четырехпроводной и однофазной двухпроводной схеме подключения

Процедура измерения и расчета кратковременной дозы фликера запускается при входе в режим «Регистрация и ПКЭ» и прекращается при выходе из этого режима. Первое значение кратковременной дозы фликера появляется через время равное интервалу времени измерения плюс 2 мин, в дальнейшем обновление значений кратковременной дозы фликера происходит через время, равное интервалу времени измерения.

Возврат из любого окна просмотра в окно **«Регистрация и ПКЭ»** осуществляется клавишей **«ESC»**.

При трехфазной четырехпроводной схеме подключения:

«Первое окно»

- напряжения первой гармоники прямой U_{y} , обратной $U_{2(1)}$ и нулевой $U_{0(1)}$ последовательностей;
- установившееся отклонение напряжения прямой последовательности δU_y и установившиеся отклонение фазных напряжений δU_{vA} , δU_{vB} , δU_{vC} ;
- коэффициент несимметрии напряжения по обратной последовательности K_{2U} ;
- коэффициент несимметрии напряжения по нулевой последовательности K_{0U} ;
- отклонение частоты Δf ;
- действующие значения первых гармоник фазных и межфазных напряжений.

«Второе окно»

- напряжения первой гармоники прямой U_{y} , обратной $U_{2(1)}$ и нулевой $U_{0(1)}$ последовательностей;
- ток первой гармоники прямой последовательности $I_{1(1)}$;
- ток первой гармоники обратной последовательности $I_{2(1)}$;
- ток первой гармоники нулевой последовательности $I_{0(1)}$;
- действующие значения первых гармоник фазных токов;
- активная мощность прямой P_1 , обратной P_2 и нулевой P_0 последовательностей;
- фазные углы между первыми гармониками напряжения и тока прямой ϕ_{1UI} , обратной ϕ_{2UI} и нулевой ϕ_{0UI} последовательностей;
- действующие значения первых гармоник фазных токов.

«Третье окно»

- коэффициент искажения синусоидальности кривой напряжения по каждой фазе K_{UA}, K_{UB}, K_{UC} ;
- коэффициенты гармонических составляющих напряжения по каждой фазе $K_{UA(n)}$, $K_{UB(n)}$, $K_{UC(n)}$ для n от 2 до 40.

«Четвертое окно»

- коэффициент искажения синусоидальности кривой тока по каждой фазе K_{IA} , K_{IB} , K_{IC} ;
- коэффициенты гармонических составляющих тока по каждой фазе $K_{IA(n)}$, $K_{IB(n)}$, $K_{IC(n)}$ для n от 2 до 40.

«Пятое окно»

• кратковременная доза фликера $P_{\rm st}$ по каждой фазе.

При трехфазной трехпроводной схеме подключения:

«Первое окно»

- напряжения первой гармоники прямой U_{v} и обратной $U_{2(1)}$ последовательностей;
- установившееся отклонение напряжения прямой последовательности δU_y и установившиеся отклонение межфазных напряжений δU_{yAB} , δU_{yBC} , δU_{yCA} ;

- коэффициент несимметрии напряжения по обратной последовательности K_{2U} ;
- отклонение частоты Δf ;
- действующие значения первых гармоник межфазных напряжений.

«Второе окно»

- напряжения первой гармоники прямой U_{v} и обратной $U_{2(1)}$ последовательностей;
- ток первой гармоники прямой последовательности $I_{1(1)}$;
- ток первой гармоники обратной последовательности $I_{2(1)}$;
- действующие значения первых гармоник фазных токов;
- **•** активная мощность прямой P_1 и обратной P_2 последовательностей;
- фазные углы между первыми гармониками напряжения и тока прямой ϕ_{1UI} и обратной ϕ_{2UI} последовательностей;
- действующие значения первых гармоник фазных токов.

«Третье окно»

- коэффициент искажения синусоидальности кривой межфазных напряжений $K_{UAB}, K_{UBC}, K_{UCA};$
- коэффициенты гармонических составляющих межфазных напряжений $K_{UAB(n)}$, $K_{UBC(n)}$, $K_{UCA(n)}$ для n от 2 до 40.

«Четвертое окно»

- коэффициент искажения синусоидальности кривой тока по каждой фазе K_{IA} , K_{IB} , K_{IC} ;
- коэффициенты гармонических составляющих тока по каждой фазе $K_{IA(n)}$, $K_{IB(n)}$, $K_{IC(n)}$ для n от 2 до 40.

Кратковременная доза фликера $P_{\rm st}$ для трехфазной трехпроводной схемы подключения не измеряется.

При однофазной двухпроводной схеме подключения:

«Первое окно»

- напряжения первой гармоники прямой U_y последовательности (действующие значения первой гармоники напряжения);
- установившееся отклонение напряжения $\delta U_{\rm v}(\delta U_{\rm vA})$;
- отклонение частоты Δf .

«Второе окно»

- напряжения первой гармоники прямой последовательности U_{y} ;
- ток первой гармоники прямой последовательности $I_{1(1)}$ (действующие значения первой гармоники тока);
- активная мощность прямой последовательности P_1 ;
- фазный угол между первыми гармониками напряжения и тока прямой последовательности ϕ_{1UI} ;
- действующее значение первой гармоники фазного тока.

«Третье окно»

- коэффициент искажения синусоидальности кривой напряжения K_{U} ;
- коэффициенты гармонических составляющих напряжения $K_{U(n)}$ для n от 2 до 40.

«Четвертое окно»

- коэффициент искажения синусоидальности кривой тока K_I ;
- коэффициенты гармонических составляющих тока $K_{I(n)}$ для n от 2 до 40.

«Пятое окно»

• кратковременная доза фликера $P_{\rm st}$.

4.4. Осциллографирование

4.4.1. Введение

При выборе пункта меню «**Осциллографирование**», на дисплее отображается подменю выбора режима осциллографирования (Рисунок 4.32).

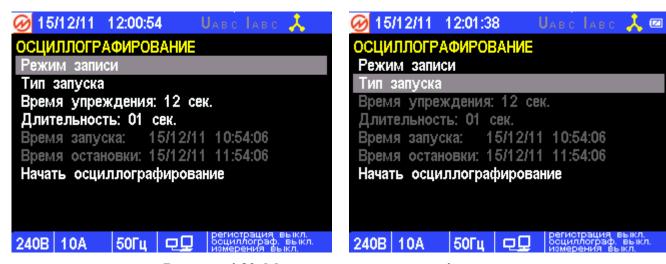


Рисунок 4.32. Меню режима осциллографирование

Подменю «Осциллографирование» состоит из следующих пунктов:

- режим записи;
- тип запуска;
- время упреждения;
- длительность;
- время запуска;
- время остановки;
- начать осциллографирование.

Пункты меню **«Время упреждения»** и **«Длительность»** доступны, только если выбран тип запуска **«По событию»** (см. п. 4.4.3).

Перемещение по пунктам меню «Осциллографирование» осуществляется с помощью клавиш \forall и \land . Для входа в выбранный пункт меню необходимо нажать клавишу «ENT», для возврата в главное меню — клавишу «ESC».

В пункте «**Начать осциллографирование**» производится запрос на подтверждение запуска осциллографирования с указанием времени записи архива и пунктом подтверждения начала регистрации (Рисунок 4.33). Распределение объемов памяти, выделяемой под различные типы архивов, осуществляется в меню «**Настройки»** \rightarrow «**Распределение памяти прибора»** (см. п. 4.6.10).

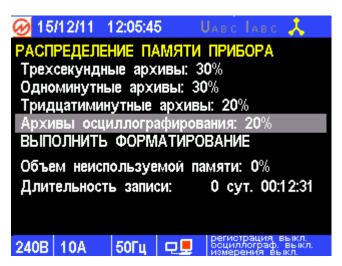


Рисунок 4.33. Меню запроса на начало осциллографирования

Если длительность записи архива не равна нулю, после подтверждения начала в зависимости от типа запуска прибор переходит в одно из состояний: **«осциллографирование»** или **«ожидание осциллографирования»**. Текущее состояние отображается в нижней строке (Рисунок 4.34).

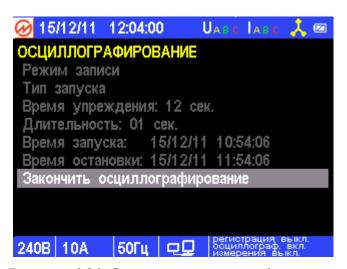


Рисунок 4.34. Состояние осциллографирования

4.4.2. Режим записи

При входе в меню «**Режим записи**» (Рисунок 4.35) осуществляется выбор одного из возможных вариантов записи. При одноразовом режиме происходит запись до момента заполнения всей выделенной под режим осциллографирования памяти (см. п. 4.6.10), после чего происходит останов осциллографирования. При циклической записи при заполнении всей выделенной под режим осциллографирования памяти происходит перезаписывание самых старых значений новыми.

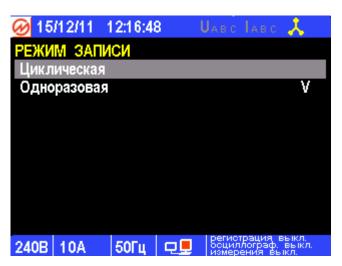


Рисунок 4.35. Меню режима записи

4.4.3. Тип запуска

В меню **«Тип запуска»** (Рисунок 4.36) осуществляется выбор одного из возможных вариантов запуска режима осциллографирования.

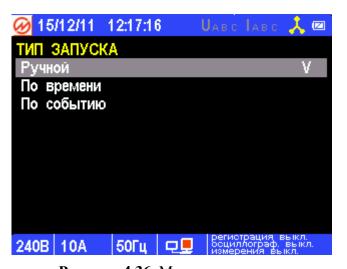


Рисунок 4.36. Меню тип запуска

При выборе типа запуска **«Ручной»** и **«По времени»** доступ к пунктам меню **«Время упреждения»** и **«Длительность»** в основном меню **«Осциллографирование»** блокируется (Рисунок 4.32). Подпункт меню **«По событию»** позволяет осуществить выбор возможных событий, при которых произойдет запись данных осциллографирования (Рисунок 4.37 и Рисунок 4.38).

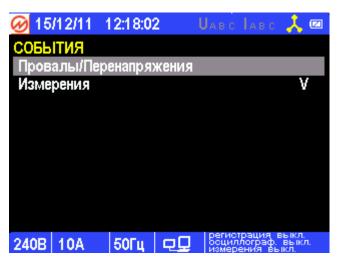
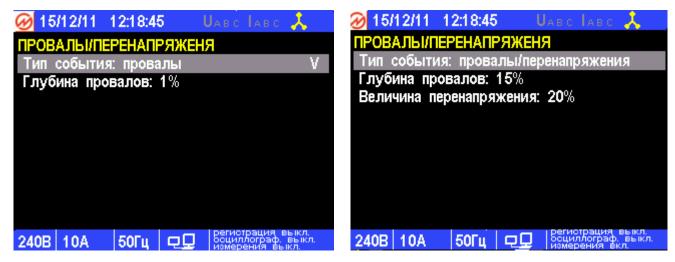



Рисунок 4.37. Меню выбора типа события для запуска осциллографирования

Рисунок 4.38. Варианты задания параметров провалов и перенапряжений для запуска осциллографирования

В пункте меню «**Провалы / перенапряжения**» (Рисунок 4.38) установив курсор на пункте «**Тип события**» клавишами **◄**, **▶** осуществляется выбор типа события. Подтверждение выбора типа события и введенных значений глубины провалов и величины перенапряжения производится нажатием клавиши «**ENT**». Установив курсор на пункте «**Глубина провалов**» или «**Величина перенапряжения**» нажатием клавиши «**ENT**» происходит вход в режим ввода величин. С помощью цифровых клавиш вводится необходимое значение от 0 до 99, нажатием клавиши «**ENT**» производится подтверждение введенного значения.

В пункте «Условия измерения» осуществляется исключительно вывод условий запуска осциллографирования (Рисунок 4.39). Задание параметров условий измерений производится через ПК с помощью программного обеспечения «Осциллоскоп». С помощью данной программы может быть задано до 3-х условий по различным параметрам.

Рисунок 4.39. Меню провалы и перенапряжения

В пункте меню «Осциллографирование» установив курсор на пункт меню «Время упреждения» и «Длительность» клавишами \checkmark , \gt осуществляется выбор одного из возможных значений (0; 3; 6; 9; 12 c).

Время упреждения — промежуток времени до начала события, результаты осциллографирования которого будут записаны в архив.

Длительность — промежуток времени после окончания события, результаты осциллографирования которого будут записаны в архив.

4.5. Обмен с ПК

Для осуществления связи между Энерготестером ПКЭ-А и ПК необходимо подсоединить прибор к ПК USB-кабелем. Обмен данными между ПК и Энерготестером ПКЭ-А может производиться в любое время, независимо от того, в каком режиме работы находится Энерготестер ПКЭ-А. Исключение составляет интервал времени непосредственно после создания архива, служащий для расчета параметров статистики (см. п. 4.3.2). При этом на ПК должно быть установлено программное обеспечение (см. «Руководство пользователя ПО "Энергомониторинг"»), обеспечивающее обмен с Энерготестером ПКЭ-А и обработку принятых от него данных.

4.6. Настройки

4.6.1. Уровни доступа

Доступ к пунктам меню «**Настройки**» (Рисунок 4.40) зависит от того, какой пароль был введен при включении Энерготестера ПКЭ-А. При включении Энерготестера ПКЭ-А под паролем 1-го уровня доступно 10 пунктов меню:

- «Схема подключения»;
- «Установка пределов»;
- «Время усреднения на экране»;
- «Подсветка дисплея»;
- «Автоблокировка меню»;
- «Язык (Language)»;
- «Реактивная мощность»;
- «Версия ПО»;

- «Память»;
- «Реактивная мощность в архивах».

При включении Энерготестера ПКЭ-А под паролем 2-го уровня доступно дополнительно еще 4 пункта меню:

- «Коррекция уставок»;
- «Дата и время»;
- «Смена паролей»;
- «Настройки ПКЭ».

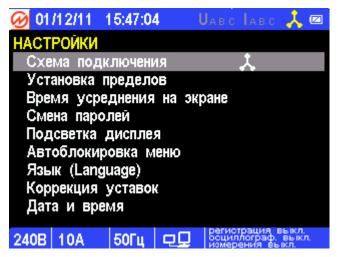


Рисунок 4.40. Меню режима настройки

В каждом из пунктов меню **«Настройки»** доступны для корректировки различные параметры. Перемещение по пунктам меню осуществляется с помощью клавиш **▼** и **▲**. Для входа в выбранный пункт меню необходимо нажать клавишу **«ENT»**, для возврата в главное меню — клавишу **«ESC»**.

4.6.2. Схема подключения

Режим «Схема подключения» (Рисунок 4.41) необходим при начальном включении Энерготестера ПКЭ-А, а также в случае изменения схемы подключения Энерготестера ПКЭ-А без его выключения. Энерготестер ПКЭ-А позволяет производить измерения в электросетях трех типов: трехфазной четырехпроводной, трехфазной трехпроводной и однофазной двухпроводной. Различные варианты подключения Энерготестера ПКЭ-А к электросетям приведены в приложении Б.

Выбор типа схемы подключения необходим для всех дальнейших вычислений.

Текущая схема подключения постоянно отображаются в верхней строке состояния (Рисунок 4.2).

Примечание

При варианте подключения к трехфазной трехпроводной сети Энерготестер ПКЭ-А может работать в одном из двух вариантов подключения к токовым цепям:

- Энерготестер ПКЭ-А подключается непосредственно к трем токовым цепям фазных токов A, B и C;
- Энерготестер ПКЭ-А подключается только к двум токовым цепям фазных токов А и С, значение тока фазы В восстанавливается программно.

Рисунок 4.41. Меню выбора схемы подключения Энерготестера ПКЭ-А

Схемы подключения Энерготестера ПКЭ-А к измеряемой сети приведены в приложении Б.

4.6.3. Установка пределов

Выбор данного пункта меню настроек возможен как через систему вложенных меню, так и из любого режима работы Энерготестера ПКЭ-A, не связанного с измерениями, с помощью «быстрой» клавиши « \mathbf{F} ».

При включении Энерготестера ПКЭ-А предел по напряжению устанавливается автоматически, а по току устанавливается наибольший из возможных пределов измерения. В режиме «Установка пределов» предоставляется возможность выбора пределов измерения напряжений и токов (Рисунок 4.42). Для напряжений можно выбрать один из двух вариантов: 10 или 240 В. Для токов — один из девяти вариантов (в зависимости от комплектации Энерготестера ПКЭ-А): токоизмерительные клещи К5А, К10А, К50А, К100А, К300А, К500А, К100ОА, К300ОА, К500ОА; токоизмерительные клещи повышенной точности Кв5А, Кв10А, Кв10ООА. Выбор нужного значения осуществляется с помощью клавиш ▼, ▲ и «ENT».

Рисунок 4.42. Меню выбора пределов измерения Энерготестера ПКЭ-А

Энерготестер ПКЭ-А может проводить измерения на номинальной частоте 50 и 400 Γ ц.

При работе на номинальной частоте 400 Гц в главном меню Энерготестера ПКЭ-А доступен только режим работы «**Измерения**» (см. п. 4.2).

На номинальной частоте 400 Гц в меню «Измерения» недоступны режимы «Усреднение» (см. п. 4.2.6) и «Энергия» (см. п. 4.2.7).

При работе на номинальной частоте 400 Гц Энерготестер ПКЭ-А производит измерение коэффициентов гармоник тока и напряжения с 1-й по 12-ю (см. п. 4.2.4).

Примечание

При отсутствии пределов по току пункт меню «**По току**» блокируется и выбор данного параметра невозможен.

Текущие пределы постоянно отображаются в нижней строке состояния (Рисунок 4.3).

4.6.4. Подсветка дисплея

В режиме «**Подсветка дисплея**» предоставляется возможность выбора времени, в течение которого будет включена подсветка дисплея (Рисунок 4.43).

Выбор осуществляется с помощью клавиш **У**, **∧** и **«ENT»**. Напротив выбранного режима появляется сообщение **«ОК»**. По умолчанию выбрано время подсветки дисплея 5 мин.

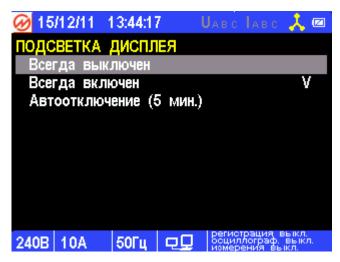


Рисунок 4.43. Меню выбора режима подсветки дисплея

При выборе режима «Всегда выключен» подсветка дисплея выключается и может быть включена выбором пункта «Всегда включен». В этом режиме увеличивается энергопотребление Энерготестером ПКЭ-А, что может быть критично в случае работы от аккумуляторов.

При выборе режима «**Всегда включен**» подсветка дисплея будет включена постоянно, пока включен сам Энерготестер ПКЭ-А.

При выборе режима «**Автоотключение** (**5 мин.**)» подсветка дисплея будет автоматически отключаться через 5 мин после последнего нажатия любой из клавиш на клавиатуре Энерготестера ПКЭ-А.

4.6.5. Автоблокировка меню

В Энерготестере ПКЭ-А реализован режим **«Автоблокировка меню»**. Включение / отключение осуществляется через меню (Рисунок 4.44) с помощью клавиш **▼**, **▲** и **«ENT»**. Напротив выбранного состояния появляется сообщение **«ОК»**. По умолчанию выбрано **«Автовозврат выключен»**.

При включении режима **«Автовозврат включен»** переход в режим **«Автоблокировка»** происходит, если в течение 5 мин на Энерготестере ПКЭ-А не нажимались клавиши. Через 5 мин после последнего нажатия любой из клавиш на клавиатуре Энерготестера ПКЭ-А происходит переход в режим **«Автоблокировка меню»** и на экране Энерготестера ПКЭ-А появляется запрос пароля (Рисунок 4.1). При этом если режимы регистрации и / или осциллографирования не активны, то также происходит снятие питания с аналоговых цепей Энерготестера ПКЭ-А (отключение режима измерений) и Энерготестер переходит в режим максимального энергосбережения.

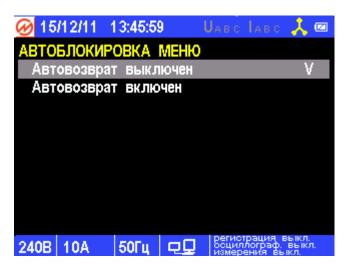


Рисунок 4.44. Меню выбора автовозврата в основное меню

По умолчанию выбрано «Автовозврат выключен».

4.6.6. Язык

В режиме «**Язык**» предоставляется возможность установить язык отображения информации на графическом дисплее Энерготестера ПКЭ-А. Выбор нужного языка осуществляется с помощью клавиш **У**, **∧** и «**ENT**». Напротив выбранного значения появляется сообщение «**OK**» (Рисунок 4.45) и происходит смена языка отображения информации на графическом дисплее.

Рисунок 4.45. Меню выбора языка

4.6.7. Коррекция уставок

Доступно только при пароле второго уровня.

При входе в режим **«Коррекция уставок»** на дисплее отображается подменю (Рисунок 4.46), состоящее из следующих пунктов:

- коррекция уставок пользователя 1;
- коррекция уставок пользователя 2;
- копирование в уставки пользователя 1;
- копирование в уставки пользователя 2.

Перемещение по пунктам режима **«Коррекция уставок»** осуществляется с помощью клавиш **∨** и **∧**. Для входа в выбранный пункт меню необходимо нажать клавишу **«ENT»**, для возврата — клавишу **«ESC»**.

Рисунок 4.46. Меню режима коррекции уставок

В режиме **«Копирование»** пользователь имеет возможность скопировать любой тип уставок по ГОСТ в выбранные Уставки пользователя (1 или 2). Для этого необходимо, войдя в режим **«Копирование»** (Рисунок 4.47), с помощью клавиш **∨** и **∧** подвести курсор к одному из типов уставок по ГОСТ и нажать клавишу **«ENT»**, после чего эти уставки будут скопированы в выбранные Уставки пользователя и произойдет возврат в режим **«Коррекция уставок»**.

⊘ 15/12/11 1	3:49:50	Јавс Тавс 🙏 🗷
КОПИРОВАНИЕ В УСТАВКИ 1		
Уставки ГОО	T 13109-97	0.38 кВ
Уставки ГОО	T 13109-97	6-20 кВ
Уставки ГОО	T 13109-97	35 kB
Уставки ГОО	T 13109-97	110-330 кВ
Для копирования нажать F		
240B 10A	50Гц 🖳 🖳	регистрация выкл. осциллограф, выкл. измерения выкл.

Рисунок 4.47. Окно режима «Копирование»

В режиме **«Коррекция»** (Рисунок 4.48) пользователь имеет возможность ввести для установившегося отклонения напряжения новые значения уставок (только для Пользовательских уставок 1 и только для Пользовательских уставок 2). Для этого необходимо, войдя в режим **«Копирование»**, с помощью клавиш **∨** и **∧** подвести курсор к одному из значений требующих коррекции и нажав клавишу **«ENT»**, с помощью цифровой клавиатуры и клавиш **∢**, **>**, **□** ввести нужные значения (с помощью клавиши **□** осуществляется изменение знака).

Рисунок 4.48. Окно режима «Коррекция»

Значения вводимых уставок могут находиться в диапазоне от -50 до +50 %.

Для ввода нового значения необходимо нажать клавишу «**ENT**», для отказа от ввода набранного значения — клавишу «**ESC**». После любого из этих действий произойдет переход в окно режима «**Коррекция**».

Внимание!

При вводе пользовательских уставок следует придерживаться основного правила: модуль ПДЗ должен быть строго больше модуля НДЗ.

4.6.8. Дата и время

При входе в режим «Дата и время» пользователь получает возможность изменения текущих даты и времени (Рисунок 4.49). Для этого необходимо с помощью клавиш ▼ и ▲ подвести курсор к одному из значений, требующих коррекции, и нажать клавишу «ENT». С помощью цифровой клавиатуры и клавиш ◀, ▶, ввести нужные значения и нажать клавишу «ENT», после чего произойдет возврат в режим «Дата и время», и новые значения даты и времени появятся в верхней строке дисплея. Для возврата в меню «Дата и время» без изменения значений даты и времени необходимо нажать клавишу «ESC».

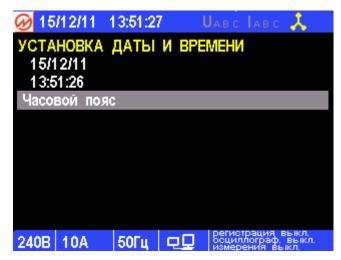


Рисунок 4.49. Окно корректировки даты и времени

Также в режиме «Дата и время» пользователь может изменить значение текущего часового пояса (Рисунок 4.50). Для этого необходимо с помощью клавиш У и ▲ подвести курсор к одному из вариантов и нажать клавишу «ENT». Напротив выбранного значения появляется сообщение «OK».

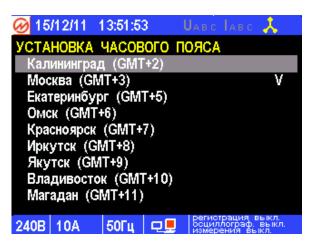
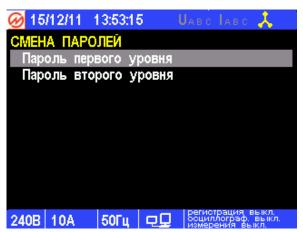



Рисунок 4.50. Установка часового пояса

4.6.9. Смена паролей

В режиме «Смена паролей» можно изменить пароль первого и второго уровня Энерготестера ПКЭ-А. Для этого необходимо ввести новый пароль, нажать клавишу «ENT» и подтвердить его, введя еще раз и нажав клавишу «ENT». Ввод пароля осуществляется с помощью цифровой клавиатуры, ввод завершается нажатием клавиши «ENT» (Рисунок 4.51).

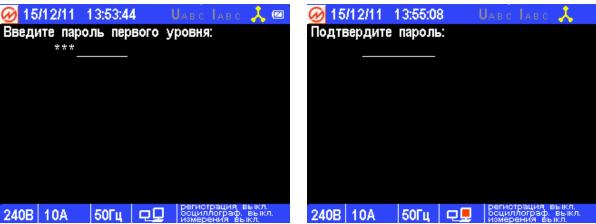


Рисунок 4.51. Окна режима смены паролей Энерготестера ПКЭ-А

В случае неправильного подтверждения нового пароля происходит возврат к вводу нового пароля. В случае правильного подтверждения нового пароля происходит возврат в меню «Настройки».

Для выхода из режима «Смена паролей» без изменения пароля необходимо нажать клавишу «ESC».

4.6.10. Память

В режиме «**Память**» предоставляется возможность распределения памяти между архивами и форматирования энергонезависимой памяти Энерготестера ПКЭ-А (Рисунок 4.52).

Выбор осуществляется с помощью клавиш **У**, **∧** и **«ENT»**.

Для перераспределения объемов памяти, отведенных под различные типы архивов (Рисунок 4.53), необходимо с помощью клавиш У и ▲ подвести курсор к корректируемому типу архива и нажать клавишу «ENT». С помощью цифровой клавиатуры и клавиш ✓, ➤ ввести нужные значения и нажать клавишу «ENT». Для подтверждения введенных значений необходимо выбрать пункт «ВЫПОЛНИТЬ ФОРМАТИРОВАНИЕ» и нажать клавишу «ENT».

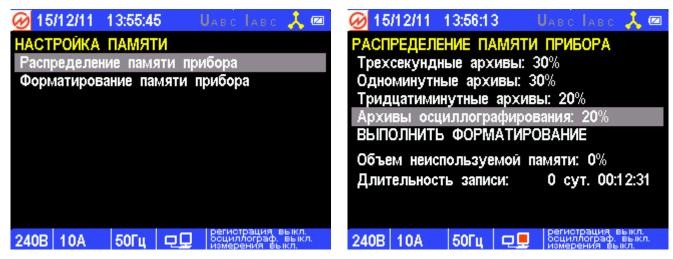


Рисунок 4.52. Меню режима управления памятью Рисунок 4.53. Меню распределения памяти

Примечание

Увеличение объема памяти, отводимой под выбранный тип архивов, возможно только при ненулевом значении объема неиспользуемой памяти. То есть в случае нулевого значения объема неиспользуемой памяти и при необходимости увеличения объема памяти, отводимой под выбранный тип архивов, необходимо вначале уменьшить значения объемов памяти, отводимой под другие типы архивов.

Объем энергонезависимой памяти, предназначенной для архивов, по умолчанию распределен следующим образом:

- трехсекундные архивы 30 %;
- одноминутные архивы 30 %;
- тридцатиминутные архивы 10 %;
- архивы осциллографирования 30 %.

При этом длительность записи составляет:

- для трехсекундных архивов 1 сут 06:03:12;
- для одноминутных архивов 25 сут 01:04:00;

- для тридцатиминутных архивов 250 сут 00:00:00;
- для архивов осциллографирования 0 сут 00:18:47.

При перераспределении памяти и выделении 100 % памяти под любой из типов архивов, получим следующие длительности записей:

- для трехсекундных архивов 4 сут 04:12:48;
- для одноминутных архивов 83 сут 12:16:00;
- для тридцатиминутных архивов 2505 сут 08:00:00;
- для архивов осциллографирования 0 сут 01:02:38.

Для полного расчета ПКЭ и корректной работы с ПО необходимо не менее 30 % памяти выделить под трехсекундные архивы.

При входе в режим **«Форматирование памяти»** появляется запрос на подтверждение форматирования (Рисунок 4.54).

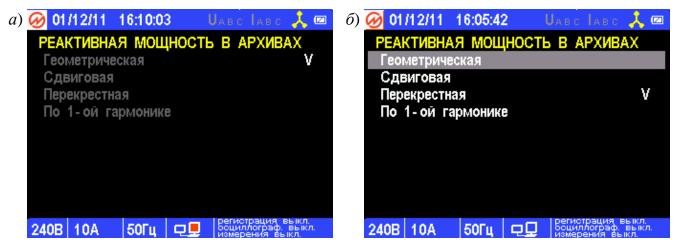
Рисунок 4.54. Меню форматирования памяти

При отказе от форматирования и возврата в меню «Память» необходимо нажать клавишу «ESC».

При подтверждении форматирования, начинается процесс инициализации и проверки всей энергонезависимой памяти Энерготестера ПКЭ-А. После форматирования памяти происходит автоматический переход в меню «Память».

В результате форматирования происходит очистка (стирание) всех архивов: суточных архивов ПКЭ, архивов усредненных значений показателей энергопотребления, архивов провалов и перенапряжений. Для возврата в меню «Память» необходимо нажать клавишу «ESC».

4.6.11. Реактивная мощность в архивах


В режиме «**Реактивная мощность в архивах**» (Рисунок 4.55) при входе под паролем второго уровня предоставляется возможность выбора метода расчета реактивной мощности в архивах:

- геометрическая;
- сдвиговая;
- перекрестная;
- по 1-й гармонике.

Выбор осуществляется с помощью клавиш **∨**, **∧** и **«ENT»**.

При работе с прибором под паролем первого уровня данный режим позволяет узнать, каким методом осуществляется расчет в настоящее время, без возможности выбора.

Рисунок 4.55. Меню выбора метода расчета реактивной мощности при работе под паролями 1-го (a) и 2-го (δ) уровней

4.6.12. Настройки ПКЭ

Меню **«Настройки ПКЭ»** (Рисунок 4.56) доступно только при входе под паролем второго уровня. Оно состоит из двух пунктов:

- «Отчеты ПКЭ»;
- «Расчет статистики KU».

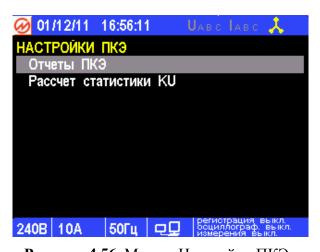


Рисунок 4.56. Меню «Настройки ПКЭ»

Пункт «**Отчеты ПК**Э» (Рисунок 4.57) позволяет выбрать время смены суток в архивах ПКЭ. При многосуточном создании архива есть возможность выбора способа разделения архивов ПКЭ: либо при смене суток, либо через каждые 24 часа с момента начала регистрации.

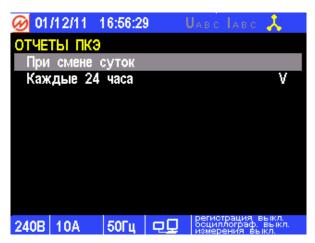


Рисунок 4.57. Экран выбора времени смены суток в архивах ПКЭ

Пункт «Расчет статистики KU» (Рисунок 4.58) позволяет включать/выключать расчет статистики KU.

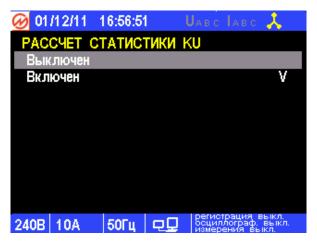


Рисунок 4.58. Экран выбора включения / выключения расчета статистики в архиве


Из-за большого объема данных, расчет верхних значений для:

- \blacksquare коэффициента искажения синусоидальности кривой фазного/межфазного напряжения K_{U} ,
 - коэффициента n-й гармонической составляющей напряжения $K_{U(n)}$,
- коэффициентов несимметрии напряжения по обратной K_{2U} и нулевой K_{0U} последовательностям невозможен во время регистрации (*верхнее значение* это верхняя граница интервала, в котором с вероятностью 95 % находятся измеренные значения данных показателей КЭ (по ГОСТ 13109–97)).

Если расчет статистики KU *включен*, то расчет верхних значений указанных величин производится по окончании каждого расчетного периода (каждые 24 ч или при смене суток в зависимости от установки в пункте «Отчеты ПКЭ») и по окончании регистрации. Длительность расчета зависит от длительности расчетного периода и от статистических свойств выборки самих измеренных значений и может занимать до 45 мин.

Если расчет статистики KU *выключен*, то во время регистрации расчет верхних значений указанных величин не производится, и в соответствующих полях будут находиться нулевые значения.

Внимание! Во время расчета невозможна связь прибора с ПК.

4.6.13. Версия программного обеспечения

На экране **«Версия программного обеспечения»** отображается информация о внутреннем программном обеспечении Энерготестера ПКЭ-A (Рисунок 4.59).

Рисунок 4.59. Экран «Версия программного обеспечения»

5. Техническое обслуживание

- 5.1. Техническое обслуживание производится с целью обеспечения бесперебойной работы, поддержания эксплуатационной надежности и повышения эффективности использования Энерготестера ПКЭ-А.
- 5.2. При проведении технического обслуживания необходимо соблюдать меры безопасности, приведенные в разд. 1 и п. 3.3.2 настоящего РЭ.
 - 5.3. Текущее техническое обслуживание заключается в выполнении операций:
 - очистки рабочих поверхностей клавиатуры и дисплея;
 - очистки контактов соединителей в случае появления на них окисных пленок и грязи и проверке их крепления;
 - очистки поверхностей разрыва магнитопровода токоизмерительных клещей в случае появления на них окисных пленок или грязи.
 - 5.4. Перечень возможных неисправностей и способы их устранения:

№ п.п.	Неисправность	Способ устранения
1	Энерготестер ПКЭ-А не включается	Убедитесь, что в батарейный отсек вставлены аккуму- ляторы
		Подключите Энерготестер ПКЭ-А к адаптеру питания и включите адаптер в сеть. Зарядите аккумуляторы полностью!
		Проверьте подключение кабеля адаптера питания
2	Энерготестер ПКЭ-А отключается самопроизвольно	Зарядите аккумуляторы
3	Аккумуляторы быстро разряжаются	См. п. 3.3.2
		Замените неисправные аккумуляторы и зарядите их в соответствии с п. 3.3.2
4	Отсутствует связь между Энерготестером ПКЭ-А и ПК по интерфейсу USB	Проверить настройки канала передачи данных в ПО на ПК
		Проверить кабель

6. Хранение

- 6.1. Условия хранения Энерготестера ПКЭ-А должны соответствовать условиям хранения 3 по ГОСТ 15150–69.
- 6.2. Длительное хранение Энерготестера ПКЭ-А должно осуществляться в упаковке предприятия-изготовителя в отапливаемом хранилище.

Условия хранения Энерготестера ПКЭ-А в упаковке:

Условия хранения Энерготестера ПКЭ-А без упаковки:

- температура окружающего воздуха от 10 до 35 °C;
- 6.3. В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионно-активных агентов для атмосферы типа 1 по ГОСТ 15150—69.

7. Транспортирование

7.1. Транспортирование Энерготестера ПКЭ-А должно производиться в упаковке, только в закрытом транспорте (железнодорожным или автомобильным транспортом — с защитой от атмосферных осадков, воздушным транспортом — в отапливаемых герметизированных отсеках).

Условия транспортирования:

- температура окружающего воздуха от минус 40 до плюс 50 °C;

8. Маркировка и пломбирование

8.1. Маркировка Энерготестера ПКЭ-А

На лицевой панели Энерготестера ПКЭ-А нанесены:

- наименование прибора «Энерготестер ПКЭ-А»;
- товарный знак предприятия-изготовителя;
- символ двойной и усиленной изоляции по ГОСТ Р 52319–05;
- изображение знака утверждения типа средства измерения по ПР 50.2.009;
- изображение знака соответствия.

На шильдике, расположенном на задней панели Энерготестера ПКЭ-А, нанесены:

- наименование и товарный знак предприятия-изготовителя;
- порядковый номер Энерготестера ПКЭ-А по системе нумерации предприятияизготовителя;
- дата изготовления;
- вид и номинальное напряжение питания.
- 8.2. На боковую и торцевую стенки ящика транспортной тары нанесены манипуляционные знаки по ГОСТ 14192–96 «Хрупкое Осторожно», «Беречь от влаги» и «Верх».
- 8.3. Пломба установлена в гнездо крепежного винта Энерготестера ПКЭ-А. Пломбирование Энерготестера ПКЭ-А после вскрытия и ремонта могут проводить только специально уполномоченные организации и лица.

9. Гарантии изготовителя

- 9.1. Все нижеизложенные условия гарантии действуют в рамках законодательства Российской Федерации, регулирующего защиту прав потребителей.
- 9.2. В соответствии с п. 6 ст. 5 Закона РФ «О защите прав потребителей» «НПП Марс-Энерго» устанавливает на изделия гарантийный срок 2 года со дня покупки. В соответствии с п. 3 статьи 19 Закона РФ «О защите прав потребителей» на аккумуляторы и аккумуляторную батарею установлен гарантийный срок 6 месяцев со дня покупки. Если в течение этого гарантийного срока в изделии обнаружатся дефекты (существовавшие в момент первоначальной покупки) в материалах или работе, «НПП Марс-Энерго» бесплатно отремонтирует это изделие или заменит изделие или его дефектные детали на приведённых ниже условиях. «НПП Марс-Энерго» может заменять дефектные изделия или их детали новыми или восстановленными изделиями или деталями. Все заменённые изделия и детали становятся собственностью «НПП Марс-Энерго».

9.3. Условия гарантии

Услуги по гарантийному обслуживанию предоставляются по предъявлении потребителем товарно-транспортной накладной, кассового (товарного) чека и свидетельства о приёмке (с указанием даты покупки, модели изделия, его серийного номера) вместе с дефектным изделием до окончания гарантийного срока. В случае отсутствия указанных документов гарантийный срок исчисляется со дня изготовления товара.

«НПП Марс-Энерго» может отказать в бесплатном гарантийном обслуживании, если документы заполнены не полностью или неразборчиво. Настоящая гарантия недействительна, если будет изменён, стёрт, удалён или будет неразборчив серийный номер на изделии.

Настоящая гарантия не распространяется на транспортировку и риски, связанные с транспортировкой Вашего изделия до и от «НПП Марс-Энерго».

Настоящая гарантия не распространяется на следующее:

- 1) периодическое обслуживание и ремонт или замену частей в связи с их нормальным износом;
- 2) расходные материалы (компоненты, которые требуют периодической замены на протяжении срока службы изделия, например, неперезаряжаемые элементы питания и т. д.);
- 3) повреждения или модификации изделия в результате:
- а) неправильной эксплуатации, включая:
- обращение с устройством, повлёкшее физические, косметические повреждения или повреждения поверхности, модификацию изделия или повреждение жидкокристаллических дисплеев;
- установку или использование изделия не по назначению или не в соответствии с руководством по эксплуатации и обслуживанию;
- обслуживание изделия, не в соответствии с руководством по эксплуатации и обслуживанию;
- установку или использование изделия не в соответствии с техническими стандартами и нормами безопасности, действующими в стране установки или использования;

- б) заражения компьютерными вирусами или использования программного обеспечения, не входящего в комплект поставки изделия, или неправильной установки программного обеспечения;
- в) состояния или дефектов системы или её элементов, с которой или в составе которой использовалось настоящее изделие, за исключением других изделий марки «НПП Марс-Энерго», предназначенных для использования с этим изделием;
- г) использования изделия с аксессуарами, периферийным оборудованием и другими устройствами, тип, состояние и стандарт которых не соответствуют рекомендациям «НПП Марс-Энерго»;
- д) ремонта или попытки ремонта, произведённых третьими лицами или организациями;
- е) регулировки или переделки изделия без предварительного письменного согласия «НПП Марс-Энерго»;
 - ж) небрежного обращения;
- з) несчастных случаев, пожаров, попадания инородных жидкостей, химических веществ, других веществ, затопления, вибрации, высокой температуры, неправильной вентиляции, колебания напряжения, использования завышенного напряжения питания или напряжения питания, не соответствующего указанному в технической документации, облучения, электростатических разрядов, включая разряд молнии, и иных видов внешнего воздействия или влияния, не предусмотренных технической документацией.

Настоящая гарантия распространяется исключительно на аппаратные компоненты изделия. Гарантия не распространяется на программное обеспечение (как производства «НПП Марс-Энерго», так и других разработчиков), на которое распространяются прилагаемые или подразумеваемые лицензионные соглашения для конечного пользователя или отдельные гарантии или исключения.

- 9.4. В соответствии с п. 1 ст. 5 Закона РФ «О защите прав потребителей» «НПП Марс-Энерго» устанавливает для указанных товаров, за исключением аккумуляторных батарей, срок службы 4 года со дня покупки. На аккумуляторные батареи в соответствии с п. 2 ст. 5 Закона РФ «О защите прав потребителей» установлен срок службы 2 года со дня покупки. Просьба не путать срок службы с гарантийным сроком.
- 9.5. Настоятельно рекомендуем Вам сохранять на другом (внешнем) носителе информации резервную копию всей информации, которую Вы храните в памяти прибора. Ни при каких обстоятельствах «НПП Марс-Энерго» не несёт ответственности за какой-либо особый, случайный, прямой или косвенный ущерб или убытки, включая, но не ограничиваясь только перечисленным, упущенную выгоду, утрату или невозможность использования информации или данных, разглашение конфиденциальной информации или нарушение неприкосновенности частной жизни, расходы по восстановлению информации или данных, убытки, вызванные перерывами в коммерческой, производственной или иной деятельности, возникающие в связи с использованием или невозможностью использования изделия.

10. Свидетельство об упаковывании

зав. №	Прибор Энерготестер ПКЭ-А-С4	<u>-</u>	
Упаковщик			
Дата	предусмотренным в действующей конструк	кторской документации.	
11. Свидетельство о приемке Прибор Энерготестер ПКЭ-А-С4	Упаковщик	(Фамилия И. О.)	
11. Свидетельство о приемке Прибор Энерготестер ПКЭ-А-С4	Дата		
Прибор Энерготестер ПКЭ-А-С4			
Прибор Энерготестер ПКЭ-А-С4			
Прибор Энерготестер ПКЭ-А-С4			
зав. № ВПО изготовлен и принят в соответствии с ТУ 4220-034-49976497–2013 и признан годным к эксплуатации. Руководитель приемки (Фамилия И. О.) МП Дата Дата продажи	11. Свидетельс	тво о приемке	
зав. № ВПО изготовлен и принят в соответствии с ТУ 4220-034-49976497–2013 и признан годным к эксплуатации. Руководитель приемки (Фамилия И. О.) МП Дата Дата продажи			
зав. № ВПО изготовлен и принят в соответствии с ТУ 4220-034-49976497–2013 и признан годным к эксплуатации. Руководитель приемки (Фамилия И. О.) МП Дата Дата продажи			
нят в соответствии с ТУ 4220-034-49976497—2013 и признан годным к эксплуатации. Руководитель приемки			
ции. — (Фамилия И. О.) МП Дата Дата продажи — — — — — — — — — — — — — — — — — — —	3ab. № BHO	изготовлен и при-	
Руководитель приемки		97-2013 и признан годным к эксплуата-	
МП	ции.		
МП	Руководитель приемки	(Фамилия И. О.)	
Дата Дата продажи	- J. 10- 10 - 10 - 10 - 10 - 10 - 10 - 10 -	(
Дата продажи	МΠ		
Дата продажи			
	Дата		
	Пата процеми		
MΠ (<i>Фамилия И. О.</i>)	дата продажи		
$M\Pi$ (Фамилия U . O .)			
	МП	(Фамилия И. О.)	

12. Сведения о рекламациях

В случае отказа Энерготестера ПКЭ-А в период гарантийного срока при выполнении условий транспортирования, хранения, монтажа и эксплуатации потребитель должен выслать в адрес предприятия-изготовителя извещение со следующими данными:

- заводской номер Энерготестер ПКЭ-А, дата выпуска и дата ввода в эксплуатацию;
- наличие заводских пломб;
- характер дефекта;
- адрес, по которому находится потребитель, номер телефона.

Сведения о предъявляемых рекламациях потребитель заносит в следующую таблицу:

Дата, номер рекламационного акта	Организация, куда направляется рекламация	Краткое содержание рекламации	Отметка об удовлетворении рекламации	Фамилия, должность лица, составившего рекламацию

13. Сведения о поверке

Прибор Энерготестер ПКЭ-А-С4	
заводской №	

Поверка Энерготестера ПКЭ-А осуществляется в соответствии с Методикой поверки (МС2.725.003-01 МП), утвержденной ГЦИ СИ ФГУП «ВНИИМ им. Д. И. Менделеева», при выпуске из производства, после ремонта и в эксплуатации. Межповерочный интервал — 4 года.

интервал — 4 год Дата поверки	Вид поверки	Результаты поверки	Подпись и клеймо поверителя

Приложение А. Работа с токоизмерительными клещами

Токоизмерительные клещи 10A могу быть подключены к Энерготестеру ПКЭ-А в зависимости от комплектации с помощью Шунта 10A (рис. А1). При этом на Энерготестере должен быть установлен предел измерения по току К10A. При подключении Энерготестера к токовым цепям с помощью токоизмерительных клещей 10A красные штекеры должны подключаться к гнезду клещей `генератор`, а черные − `нагрузка`, в соответствии со стрелкой, расположенной рядом с этими гнездами, стрелка показывает в сторону нагрузки (рис. А2). Сами клещи должны располагаться относительно токонесущего провода в соответствии со стрелкой, расположенной на их подвижной части: генератор → нагрузка (рис. А2).

Рисунок A1 Схемы подключения токоизмерительных клещей 10A и 100A к Энерготестеру.

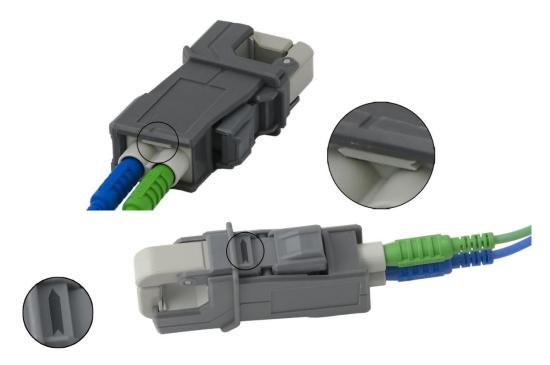


Рисунок A2 Расположение маркировки 'генератор → нагрузка' на токоизмерительных клещах 10A и 100A.

Токоизмерительные клещи 100A могу быть подключены к Энерготестеру в зависимости от комплектации либо с помощью кабеля Шунт 10A, либо с помощью кабеля Шунт 100A (рис. А3). При этом на Энерготестере должен быть установлен соответствующий предел измерения по току. При подключении Энерготестера к токовым цепям с помощью токоизмерительных клещей 100A красные штекеры должны подключаться к гнезду клещей `генератор`, а черные − `нагрузка`, в соответствии со стрелкой, расположенной рядом с этими гнездами, стрелка показывает в сторону нагрузки (рис. А2). Сами клещи должны располагаться относительно токонесущего провода в соответствии со стрелкой, расположенной на их подвижной части: генератор → нагрузка (рис. А2).

Рисунок A3 Схемы подключения токоизмерительных клещей 100A к Энерготестеру через Шунт 100A.

Токоизмерительные клещи 1000A могу быть подключены к Энерготестеру в зависимости от комплектации либо с помощью Кабеля Шунт 100A, либо с помощью Кабеля Шунт 1000A (рис. A4). При этом на Энерготестере должен быть установлен соответствующий предел измерения по току. При подключении Энерготестера к токовым цепям с помощью токо-измерительных клещей 1000A красные штекеры должны подключаться к гнезду клещей 'S1', а черные — 'S2' (рис. A5). Сами клещи должны располагаться относительно токонесущего провода в соответствии с расположенной на них стрелкой 'P1' - генератор, 'P2' - нагрузка (рис. A5).

Рисунок А4. Схемы подключения токоизмерительных клещей 1000А к Энерготестеру.

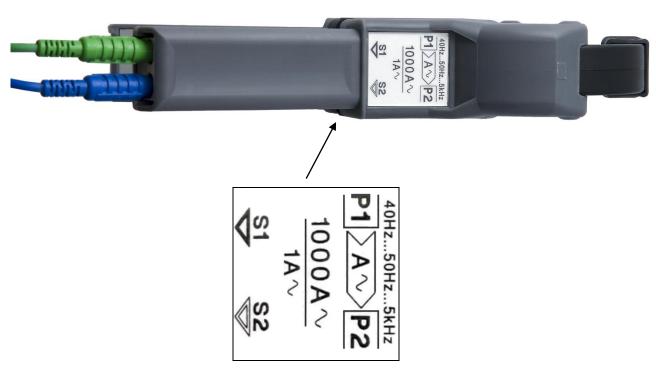


Рисунок А5 Расположение маркировки 'генератор → нагрузка' на токоизмерительных клещах 1000A.

Использование гибких токоизмерительных клещей ME Flex на 30/300/3000 A с переключателем

Комплект гибких токоизмерительных клещей на 30/300/3000 A (рис. A.6) состоит из гибких клещей и трехдиапазонного усилителя (30; 300; 3000 A) с блоком выбора рабочего предела клещей (рис. A.7).

Рис. А.б. Комплект гибких токоизмерительных клещей на 30/300/3000 А

При использовании гибких токоизмерительных клещей на 3 диапазона $(30/300/3000 \, \mathrm{A})$ подключение к Энерготестеру осуществляется через кабель трехдиапазонного усилителя (см. рис. A.7).

Рис. А.7. Трехдиапазонный усилитель токоизмерительных клещей на 30 / 300 / 3000 A с выбором рабочего предела

Для включения нужного предела измерения силы тока необходимо на панели выбора рабочего предела нажимать красную пленочную кнопку в течение примерно 2-х секунд. После этого загорится индикатор выбора диапазона напротив предела в 30 А.

Каждое повторное нажатие на кнопку переключает рабочий предел по циклу: $30~{\rm A} \to 300~{\rm A} \to 3000~{\rm A} \to 30~{\rm A}$. Параллельно необходимо выставить аналогичный предел измерения по току (30; 300 или 3000 A) на Энерготестере.

Для выключения токоизмерительных клещей необходимо на блоке выбора рабочего предела нажимать на красную кнопку в течение примерно 2-х секунд.

При подключении Энерготестера к токовым цепям с помощью гибких токоизмерительных клещей 30/300/3000 А, клещи должны располагаться относительно токонесущего провода в соответствии со стрелкой, расположенной на узле сочленения клещей («нагрузка» → «генератор»). Для обеспечения наибольшей точности измерений гибкие клещи должны располагаться относительно токонесущего провода таким образом, чтобы узел сочленения клещей был максимально удален от этого провода.

Питание усилителя осуществляется как от аккумуляторных батарей (2 элемента Ni-Cd или Ni-MH типа AA, напряжение 1,25 B), так и от гальванических элементов (неперезаряжаемых батареек, 2 солевых или щелочных элемента типа AA, напряжение 1,5 B).

ВНИМАНИЕ!

Не допускается подключение адаптера питания, предназначенного для заряда аккумуляторов, к блоку переключения пределов при нахождении в нем неперезаряжаемых батареек (2 солевых или щелочных элемента типа AA напряжением 1,5 В)!

При работе от аккумуляторов или батареек длительность работы прибора зависит от ёмкости (м $A \cdot v$), типа элементов и их состояния (новизны).

В усилителе токоизмерительных клещей 30/300/3000 А имеется функция индикации низкого уровня заряда батареи (см. табл.).

Индикация режимов работы токоизмерительных клещей 30/300/3000 A с блоком выбора рабочего предела

Режим Индикация		Что происходит
Питание отключено	Не горит ни один светодиод	Прибор не работает
Нормальный рабочий	Горит один из индикаторов пределов измерения, светодиод «Заряд» не горит	Прибор корректно работает
Предупреждающий	Одна короткая вспышка, повторяющаяся каждые 3 с	Прибор корректно работает, но предупреждает о необходимости заряда/замены элементов питания
Контрольный	3 коротких вспышки, повторяющиеся каждые 3 с	Измерения не проводятся. Срочно зарядите / замените элементы питания

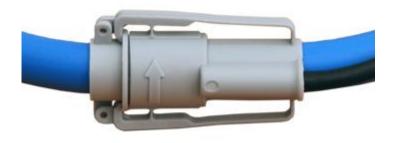
Внимание!

При необходимости замены аккумуляторов до открытия отсека с аккумуляторами необходимо:

вылючить питание клещей, отсоединить клещи от прибора.

Гибкие клещи А1257

Рисунок А.8. Схемы подключения к Энерготестеру ПКЭ-А токоизмерительных клещей $30/300/3000~\mathrm{A}$


Для включения нужного предела токоизмерительных клещей 30/300/3000 A нажимайте на кнопку до загорания светодиода напротив нужного предела (Рисунок А.9). Для выключения токоизмерительных клещей нажмите кнопку и подержите ее три секунды. Не забывайте заряжать аккумуляторы токоизмерительных клещей с помощью специального адаптера или зарядного устройства.

Внимание!

При проведении измерений при включенном адаптере питания клещей, появляется дополнительная приведенная погрешность при измерении тока и мощности, равная 1 %.

Рисунок А.9. Трехдиапазонный усилитель токоизмерительных клещей 30/300/3000 А

Рисунок А.10. Расположение маркировки «нагрузка» → «генератор» на токоизмерительных клещах 30/300/3000 A

Примечание

В усилителе токоизмерительных клещей 30/300/3000 A есть функция, позволяющая определить, когда текущее значения амплитуды измеряемого сигнала превысит выбранный предел измерения (коэффициент усиления усилителя — 3,0). При превышении предела измерения светодиод, соответствующий активному пределу, начинает мигать. Если было выявлено превышение предела, но к настоящему моменту закончилось, чтобы устранить мигание, нужно нажать на кнопку для перезагрузки. Если значение тока превысило активный предел в момент нажатия кнопки, прибор переключится на другой предел измерения с меньшей чувствительностью.

Кроме того, в усилителе токоизмерительных клещей 30 / 300 / 3000 A имеется функция индикации низкого уровня заряда батареи.

Клещи защищены от перегрузки. Они нечувствительны к постоянному току и измеряют только переменную составляющую сигнала. Время работы от аккумуляторных батарей зависит от их емкости (mAh) и типа. Возможно использование двух щелочных аккумуляторов AA или перезаряжаемых Ni-Cd или Ni-Mh.

При слабом заряде батареи загорается светодиод **Low bat**. Батарея заряжается при подключении адаптера питания. Внутренняя цепь управления зарядом обеспечивает максимальный срок службы батареи. Усилитель токоизмерительных клещей 30/300/3000 A автоматически распознает подключенный адаптер питания и управляет процессом заряда. После 24 ч непре-

рывного заряда цепь заряда отключается. До открытия отсека с аккумуляторами нужно отсоединить все подключенные к клещам измерительные аксессуары и отключить питание от клешей.

Процедуры, рекомендуемые для продления срока службы батарей:

- полностью заряжайте батарею (время заряда зависит от емкости батареи: 10–24 ч);
- полностью разряжайте батарею (батарея разряжается в процессе работы);
- повторяйте циклы заряда / разряда не менее 2-х раз (рекомендуется 4 раза).

Зарядное устройство предназначено для заряда всего комплекта батарей. Аккумуляторы в процессе заряда соединены последовательно. Они должны быть эквивалентны (с одинаковым уровнем заряда, одного типа и «возраста»). Если один из аккумуляторов отличается от остальных, это может ухудшить качество заряда и разряда во время нормальной работы (перегрев батареи, значительное сокращение времени работы; кроме того, у дефектного аккумулятора может быть перепутана полярность...). Если после нескольких циклов заряда / разряда ситуация не улучшается, нужно проверить каждый аккумулятор (сравнить напряжение на каждом из аккумуляторов, зарядить каждый из них с помощью отдельного зарядного устройства и т. п.). Возможно, дефектными окажутся только некоторые из аккумуляторов.

Индикаторы пределов измерения индицируют активный предел измерения. Если светодиод мигает (1 с выкл. / 1 с вкл.), это означает, что превышен текущий предел измерения, нужно перезагрузить прибор с помощью кнопки на передней панели. Если не горит ни один из индикаторов пределов измерения, питание на прибор не подается.

Индикатор питания:

- выкл. нормальный рабочий режим;
- мигает (1 с вкл. / 1 с выкл.) низкий уровень заряда, результаты измерений могут быть неточными;
- вкл. батарея заряжается.

Кнопка используется для включения прибора, изменения предела измерения, перезагрузки после превышения предела измерения. Если нажать и удерживать кнопку в течение 3 с, прибор выключается. В таблицах A.1 и A.2 приведена информация о режимах подачи питания на прибор и зарядке батареи, а также о том, как переключаться между режимами.

Таблица А.1. Индикация режимов подачи питания

Режим	Индикация	Что происходит
Питание отключено	Не горит ни один светодиод, внешний источник питания не подключен	Прибор не работает, батарея не заряжается
Нормальный рабочий	Горит один из индикаторов пределов измерения, светодиод Low bat (низкий уровень заряда) не горит	Питание на прибор подается от батареи. Батарея не заряжается
Нормальный ра- бочий, от внешне- го источника	Светодиод Low bat горит, внешний источник питания подключен, аккумуляторы отсутствуют. Один из индикаторов пределов измерения горит	Прибор работает от внешнего источника питания. Батарея не заряжается
Низкий уровень заряда батареи	Мигает индикатор Low bat	Прибор работает. Уровень заряда батареи недостаточен для поддержания заявленной точности измерений. Батарея не заряжается
Заряд батареи + нормальный рабочий	Один из индикаторов пределов горит, индикатор Low bat (низкий уровень заряда) горит, внешний источник питания подключен и перезаряжаемые аккумуляторы присутствуют	Батарея заряжается, питание на прибор подается от внешнего источника (не от батареи)

Режим	Индикация	Что происходит
Заряд		Батарея заряжается. Измерения невозможны

Таблица А.2. Изменение режима подачи питания

Текущий режим	Действие	Новый режим
Питание отключено	Нажать на кнопку	Нормальный рабочий
	Подключить внешний источник	Заряд
	Вставить аккумуляторы в отсек	Питание отключено
Нормальный рабочий	$U_{\rm bat}$ < 2,1 B	Низкий уровень заряда батареи
	Подключить внешний источник	Заряд батареи + нормальный рабочий
	Нажать и удерживать кнопку	Питание отключено
Низкий уровень заряда батареи	Подключить внешний источник	Заряд батареи + нормальный рабочий
Заряд батареи + нормальный рабочий	Нажать и удерживать кнопку	Заряд батареи
Нормальный рабочий, от внешнего источника	Нажать и удерживать кнопку	Питание отключено
Заряд батареи	Нажать на кнопку	Заряд батареи + нормальный рабочий

Приложение Б Схемы подключения

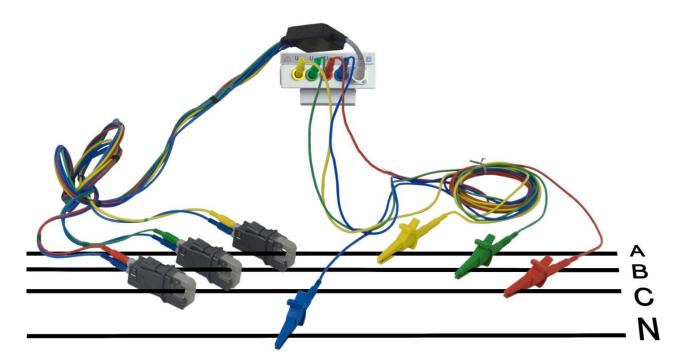


Рисунок Б1 Схема подключения Энерготестера ПКЭ к трехфазной четырехпроводной сети.

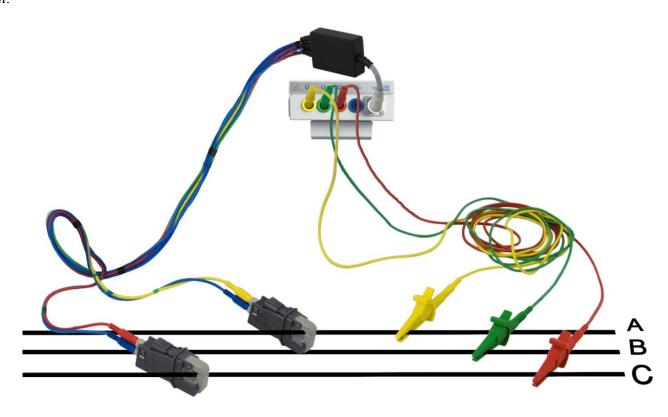


Рисунок Б2 Схема подключения Энерготестера ПКЭ к трехфазной трехпроводной се-

ти.

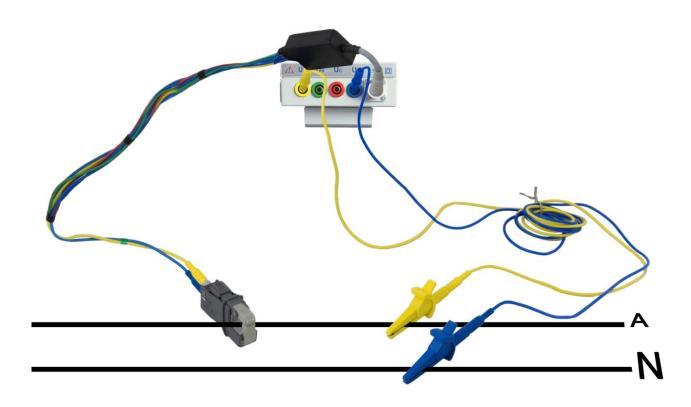


Рисунок БЗ Схема подключения Энерготестера ПКЭ к однофазной двухпроводной сети.

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: mars.pro-solution.ru | эл. почта: msn@pro-solution.ru телефон: 8 800 511 88 70